首页> 美国卫生研究院文献>Biophysical Journal >Slip Sliding Away: Load-Dependence of Velocity Generated by Skeletal Muscle Myosin Molecules in the Laser Trap
【2h】

Slip Sliding Away: Load-Dependence of Velocity Generated by Skeletal Muscle Myosin Molecules in the Laser Trap

机译:滑移:由激光陷阱中的骨骼肌肌球蛋白分子产生的速度的负载依赖性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Skeletal muscle's ability to shorten and lengthen against a load is a fundamental property, presumably reflecting the inherent load-dependence of the myosin molecular motor. Here we report the velocity of a single actin filament translocated by a mini-ensemble of skeletal myosin ∼8 heads under constant loads up to 15 pN in a laser trap assay. Actin filament velocity decreased with increasing load hyberbolically, with unloaded velocity and stall force differing by a factor of 2 with [ATP] (30 vs. 100 μM). Analysis of actin filament movement revealed that forward motion was punctuated with rapid backward 60-nm slips, with the slip frequency increasing with resistive load. At stall force, myosin-generated forward movement was balanced by backward slips, whereas at loads greater than stall, myosin could no longer sustain forward motion, resulting in negative velocities as in eccentric contractions of whole muscle. Thus, the force-velocity relationship of muscle reflects both the inherent load-dependence of the actomyosin interaction and the balance between forward and reverse motion observed at the molecular level.
机译:骨骼肌抵抗负荷缩短和伸长的能力是一项基本特性,大概反映了肌球蛋白分子马达固有的负荷依赖性。在这里,我们报道了在激光陷波分析中,在恒定负载下高达15 pN的情况下,单个肌动蛋白丝的速度由一个最小的骨骼肌肌球蛋白〜8个头部的微型集合移位。肌动蛋白丝的速度随着负荷的增加而降低,[ATP]的空载速度和失速力相差2倍(30 vs. 100μM)。对肌动蛋白丝运动的分析表明,向前运动被快速向后的60 nm滑动打断,滑动频率随电阻负载而增加。在失速力下,肌球蛋白产生的向前运动被向后滑动所平衡,而在大于失速的载荷下,肌球蛋白不再能够维持向前运动,从而导致负速度,如整个肌肉的偏心收缩。因此,肌肉的力-速度关系既反映了肌动球蛋白相互作用的固有负载依赖性,又反映了在分子水平上观察到的向前和向后运动之间的平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号