首页> 外文学位 >Probing the mechano-chemical transduction mechanism of skeletal muscle myosin II using a feedback enhanced optical trap.
【24h】

Probing the mechano-chemical transduction mechanism of skeletal muscle myosin II using a feedback enhanced optical trap.

机译:使用反馈增强型光阱探索骨骼肌肌球蛋白II的机械化学转导机制。

获取原文
获取原文并翻译 | 示例

摘要

Skeletal muscle uses more energy when it is shortening rapidly and less energy when it is maintaining a static load, a phenomenon discovered in 1923 by W. O. Fenn and A. V. Hill. This physiological feedback, termed the "Fenn effect", was one of the key observations leading to the actomyosin cross-bridge theory of muscle contraction by A. F. Huxley in 1957. The efficient control of energy liberation in isometric vs. shortening skeletal muscle implies that one or more steps in the actomyosin ATPase cycle are controlled by mechanical load borne by the molecular motor, myosin. The objective of this study is to obtain a precise correlation between the mechanical and biochemical aspects of actomyosin interactions at the single molecule level to understand the molecular mechanism of this load adaptive molecular motor.; In this work, a novel feedback enhanced infrared laser-based optical gradient trap, the "isometric clamp", was constructed. The isometric clamp was used to study the mechanics of individual skeletal muscle myosin in order to detect the reaction steps that depend on the dynamic properties of the external load. The method also enabled reliable and quantitative measurement of the mechanical properties such as the isometric force, power stroke displacement and stiffness, produced by single actomyosin interactions.; The results obtained from this work indicate that single myosin molecules transduce energy as efficiently as whole muscle and that a component of the Fenn effect is reversal of the force-generating actomyosin transition under high load without net utilization of ATP. Our results, together with the earlier studies of muscle contraction suggest that the actomyosin enzymatic cycle has multiple strain dependent steps, and that two factors contribute toward the Fenn effect: at low shortening velocities, the economical reversal of the force-generating actomyosin transition saves ATP and at high shortening velocities strain-dependent acceleration of ADP release increases ATP turnover. Both of these effects probably occur in muscle contraction and thus contribute to its efficient control of energy utilization.
机译:骨骼肌在迅速缩短时会消耗更多的能量,而在保持静态负载时会消耗更少的能量,这是W. O. Fenn和A. V. Hill在1923年发现的现象。这种生理反馈被称为“芬恩效应”,是AF Huxley于1957年导致肌动球蛋白跨桥理论肌肉收缩的关键观察之一。在等轴测和缩短骨骼肌中能量释放的有效控制意味着一个放线菌素ATPase循环中的一个或多个步骤受分子马达肌球蛋白所承受的机械负荷控制。这项研究的目的是在单分子水平上获得肌动球蛋白相互作用的机械和生化方面的精确关联,以了解这种负载自适应分子马达的分子机理。在这项工作中,构建了一种新型的基于反馈增强型红外激光的光学梯度阱,即“等距夹具”。等距钳用于研究各个骨骼肌肌球蛋白的力学,以检测取决于外部负荷动态特性的反应步骤。该方法还使得能够可靠且定量地测量由单肌动球蛋白相互作用产生的机械性能,例如等轴测力,动力冲程位移和刚度。从这项工作中获得的结果表明,单个肌球蛋白分子与整个肌肉一样有效地传递能量,并且芬恩效应的一个组成部分是在高负荷下逆转力生肌球蛋白的转变,而没有净利用ATP。我们的研究结果以及对肌肉收缩的早期研究表明,肌动球蛋白酶的酶促循环具有多个应变依赖性步骤,并且两个因素导致了芬恩效应:在短的低速下,产生力的肌动球蛋白转变的经济逆转可以节省ATP在高缩短速度下,依赖应变的ADP释放加速会增加ATP转换。这两种作用都可能发生在肌肉收缩中,因此有助于其有效控制能量利用。

著录项

  • 作者

    Takagi, Yasuharu.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Engineering Biomedical.; Biophysics General.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 263 p.
  • 总页数 263
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号