首页> 美国卫生研究院文献>Biophysical Journal >Bridging the Gap between Structural and Lattice Models: A Parameterization of Energy Transfer and Trapping in Photosystem I
【2h】

Bridging the Gap between Structural and Lattice Models: A Parameterization of Energy Transfer and Trapping in Photosystem I

机译:弥合结构模型和晶格模型之间的差距:光系统I中能量转移和俘获的参数化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the absence of an accurate structural model, the excited state dynamics of energy-transferring systems are often modeled using lattice models. To demonstrate the validity and other potential merits of such an approach we present the results of the modeling of the energy transfer and trapping in Photosystem I based upon the 2.5 Å structural model, and show that these results can be reproduced in terms of a lattice model with only a few parameters. It has recently been shown that at room temperature the dynamics of a hypothetical Photosystem I particle, not containing any red chlorophylls (chls), are characterized by a longest (trapping) lifetime of 18 ps. The structure-based modeling of the dynamics of this particle yields an almost linear relationship between the possible values of the intrinsic charge-separation time at P700, 1/γ, and the average single-site lifetime in the antenna, τss. Lattice-based modeling, using the approach of a perturbed two-level model, reproduces this linear relation between τss and 1/γ. Moreover, this approach results in a value of the (modified) structure-function corresponding to a structure exhibiting a mixture of the characteristics of both a square and a cubic lattice, consistent with the structural model. These findings demonstrate that the lattice model describes the dynamics of the system appropriately. In the lattice model, the total trapping time is the sum of the delivery time to the reaction center and the time needed to quench the excitation after delivery. For the literature value of τss = 150 fs, both these times contribute almost equally to the total trapping time of 18 ps, indicating that the system is neither transfer- nor trap-limited. The value of ∼9 ps for the delivery time is basically equal to the excitation-transfer time from the bulk chls to the red chls in Synechococcus elongatus, indicating that energy transfer from the bulk to the reaction center and to the red chls are competing processes. These results are consistent with low-temperature time-resolved and steady-state fluorescence measurements. We conclude that lattice models can be used to describe the global energy-transfer properties in complex chromophore networks, with the advantage that such models deal with only a few global, intuitive parameters rather than the many microscopic parameters obtained in structure-based modeling.
机译:在没有精确的结构模型的情况下,通常使用晶格模型对能量传输系统的激发态动力学进行建模。为了证明这种方法的有效性和其他潜在的优点,我们介绍了基于2.5Å结构模型的光系统I中能量转移和俘获建模的结果,并表明可以用晶格模型再现这些结果。仅带有几个参数。最近已显示,在室温下,假设的Photosystem I粒子(不含任何红色叶绿素)的动力学特征是最长(捕获)寿命为18 ps。该粒子动力学的基于结构的建模在P700处的固有电荷分离时间的可能值1 /γ与天线中的平均单点寿命τss之间产生了几乎线性的关系。基于格的建模,使用扰动的两级模型的方法,再现了τss和1 /γ之间的线性关系。而且,该方法导致(修改的)结构函数的值对应于显示出与结构模型一致的正方形和立方晶格的特征的混合的结构。这些发现表明,晶格模型适当地描述了系统的动力学。在晶格模型中,总捕获时间是到达反应中心的时间与在释放后猝灭激发所需的时间之和。对于τss= 150 fs的文献资料值,这两个时间几乎都等于18 ps的总捕获时间,这表明系统既不受传输限制,也不受陷阱限制。传递时间的〜9 ps值基本上等于伸长的Synechococcus elongatus中从主体chls到红色chls的激发转移时间,这表明从主体到反应中心以及红色chls的能量转移是竞争过程。 。这些结果与低温时间分辨和稳态荧光测量结果一致。我们得出的结论是,晶格模型可用于描述复杂发色团网络中的全局能量传递特性,其优势在于此类模型仅处理少数全局,直观参数,而不处理基于结构的建模中获得的许多微观参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号