首页> 外文期刊>Biochemistry >Structure-Based Kinetic Modeling of Excited-State Transfer and Trapping in Histidine-Tagged Photosystem II Core Complexes from Synechocystis.
【24h】

Structure-Based Kinetic Modeling of Excited-State Transfer and Trapping in Histidine-Tagged Photosystem II Core Complexes from Synechocystis.

机译:基于结构的动力学模型的激发态转移和诱捕组氨酸标记的光系统II核心复合体的诱捕状态。

获取原文
获取原文并翻译 | 示例
           

摘要

Chlorophyll fluorescence decay kinetics in photosynthesis are dependent on processes of excitation energy transfer, charge separation, and electron transfer in photosystem II (PSII). The interpretation of fluorescence decay kinetics and their accurate simulation by an appropriate kinetic model is highly dependent upon assumptions made concerning the homogeneity and activity of PSII preparations. While relatively simple kinetic models assuming sample heterogeneity have been used to model fluorescence decay in oxygen-evolving PSII core complexes, more complex models have been applied to the electron transport impaired but more highly purified D1-D2-cyt b(559) preparations. To gain more insight into the excited-state dynamics of PSII and to characterize the origins of multicomponent fluorescence decay, we modeled the emission kinetics of purified highly active His-tagged PSII core complexes with structure-based kinetic models. The fluorescence decay kinetics of PSII complexes contained a minimum of three exponential decay components at F(0) and four components at F(m). These kinetics were not described well with the single radical pair energy level model, and the introduction of either static disorder or a dynamic relaxation of the radical pair energy level was required to simulate the fluorescence decay adequately. An unreasonably low yield of charge stabilization and wide distribution of energy levels was required for the static disorder model, and we found the assumption of dynamic relaxation of the primary radical pair to be more suitable. Comparison modeling of the fluorescence decay kinetics from PSII core complexes and D1-D2-cyt b(559) reaction centers indicated that the rates of charge separation and relaxation of the radical pair are likely altered in isolated reaction centers.
机译:光合作用中的叶绿素荧光衰减动力学取决于光系统II(PSII)中的激发能转移,电荷分离和电子转移过程。荧光衰减动力学的解释及其通过合适的动力学模型进行的精确模拟高度依赖于有关PSII制剂均一性和活性的假设。虽然假设样品具有异质性的相对简单的动力学模型已用于模拟氧气释放PSII核心复合物中的荧光衰减,但更复杂的模型已应用于电子传输受损但纯度更高的D1-D2-cyt b(559)制备物中。为了更深入地了解PSII的激发态动力学并表征多组分荧光衰减的起源,我们使用基于结构的动力学模型对纯化的高活性His标记PSII核复合物的发射动力学进行了建模。 PSII复合物的荧光衰减动力学至少在F(0)处包含三个指数衰减成分,在F(m)处包含四个成分。这些动力学没有用单自由基对能级模型很好地描述,并且需要引入静态无序或自由基对能级的动态松弛来充分模拟荧光衰减。静态失调模型需要不合理的低电荷稳定产量和广泛的能级分布,并且我们发现伯基对动态弛豫的假设更为合适。 PSII核心配合物和D1-D2-cyt b(559)反应中心的荧光衰减动力学的比较模型表明,电荷的分离速率和自由基对的弛豫速率在孤立的反应中心中可能发生了变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号