首页> 美国卫生研究院文献>Biophysical Journal >The key event in force-induced unfolding of Titins immunoglobulin domains.
【2h】

The key event in force-induced unfolding of Titins immunoglobulin domains.

机译:力诱导的Titin免疫球蛋白结构域展开的关键事件。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Steered molecular dynamics simulation of force-induced titin immunoglobulin domain I27 unfolding led to the discovery of a significant potential energy barrier at an extension of approximately 14 A on the unfolding pathway that protects the domain against stretching. Previous simulations showed that this barrier is due to the concurrent breaking of six interstrand hydrogen bonds (H-bonds) between beta-strands A' and G that is preceded by the breaking of two to three hydrogen bonds between strands A and B, the latter leading to an unfolding intermediate. The simulation results are supported by Angstrom-resolution atomic force microscopy data. Here we perform a structural and energetic analysis of the H-bonds breaking. It is confirmed that H-bonds between strands A and B break rapidly. However, the breaking of the H-bond between strands A' and G needs to be assisted by fluctuations of water molecules. In nanosecond simulations, water molecules are found to repeatedly interact with the protein backbone atoms, weakening individual interstrand H-bonds until all six A'-G H-bonds break simultaneously under the influence of external stretching forces. Only when those bonds are broken can the generic unfolding take place, which involves hydrophobic interactions of the protein core and exerts weaker resistance against stretching than the key event.
机译:力诱导的肌动蛋白免疫球蛋白结构域I27展开的分子动力学模拟模拟,导致在保护该结构域免受拉伸的展开途径中,在大约14 A的延伸处发现了一个明显的势能垒。先前的模拟表明,这种障碍是由于β链A'和G之间的六个链间氢键(H键)同时断裂,随后是链A和B之间的两至三个氢键断裂而引起的。导致展开的中间体。仿真结果得到埃分辨率原子力显微镜数据的支持。在这里,我们对氢键断裂进行结构和能量分析。证实了在链A和B之间的H键迅速断裂。但是,链A'和G之间的H键断裂需要水分子的波动来辅助。在纳秒级模拟中,发现水分子与蛋白质骨架原子反复相互作用,削弱了各个链间的H键,直到所有六个A'-G H键在外部拉伸力的影响下同时断裂。仅当那些键断裂时,才发生一般的展开,其涉及蛋白质核心的疏水相互作用,并且与关键事件相比,对拉伸的抵抗力较弱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号