首页> 美国卫生研究院文献>Biophysical Journal >Adhesion forces of lipids in a phospholipid membrane studied by molecular dynamics simulations.
【2h】

Adhesion forces of lipids in a phospholipid membrane studied by molecular dynamics simulations.

机译:通过分子动力学模拟研究脂质在磷脂膜中的粘附力。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lipid adhesion forces can be measured using several experimental techniques, but none of these techniques provide insight on the atomic level. Therefore, we performed extensive nonequilibrium molecular dynamics simulations of a phospholipid membrane in the liquid-crystalline phase out of which individual lipid molecules were pulled. In our method, as an idealization of the experimental setups, we have simply attached a harmonic spring to one of the lipid headgroup atoms. Upon retraction of the spring, the force needed to drag the lipid out of the membrane is recorded. By simulating different retraction rates, we were able to investigate the high pull rate part of the dynamical spectrum of lipid adhesion forces. We find that the adhesion force increases along the unbinding path, until the point of rupture is reached. The maximum value of the adhesion force, the rupture force, decreases as the pull rate becomes slower, and eventually enters a friction-dominated regime. The computed bond lengths depend on the rate of rupture, and show some scatter due to the nonequilibrium nature of the experiment. On average, the bond length increases from approximately 1.7 nm to 2.3 nm as the rates go down. Conformational analyses elucidate the detailed mechanism of lipid-membrane bond rupture. We present results of over 15 ns of membrane simulations. Implications for the interpretation and understanding of experimental rupture data are discussed.
机译:可以使用几种实验技术来测量脂质粘附力,但是这些技术都无法提供有关原子水平的见解。因此,我们对液晶相中从中拉出单个脂质分子的磷脂膜进行了广泛的非平衡分子动力学模拟。在我们的方法中,作为实验设置的理想选择,我们仅将谐波弹簧附加到脂质头基原子之一上。在弹簧缩回时,记录了将脂质从膜中拉出所需的力。通过模拟不同的回缩速率,我们能够研究脂质粘附力动力学谱中的高拉速率部分。我们发现粘附力沿着解开的路径增加,直到达到破裂点。附着力的最大值(断裂力)随着拉速的降低而减小,并最终进入以摩擦为主的状态。计算得出的键长取决于断裂速率,由于实验的非平衡性质,会显示出一些分散。平均而言,随着速率的降低,键长从大约1.7 nm增加到2.3 nm。构象分析阐明了脂质-膜键断裂的详细机制。我们提出了超过15 ns的膜模拟结果。讨论了对解释和理解实验破裂数据的含义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号