首页> 外文学位 >Shock-induced poration, cholesterol flip-flop and small interfering RNA transfection in a phospholipid membrane: Multimillion atom, microsecond molecular dynamics simulations.
【24h】

Shock-induced poration, cholesterol flip-flop and small interfering RNA transfection in a phospholipid membrane: Multimillion atom, microsecond molecular dynamics simulations.

机译:冲击诱导的渗透,胆固醇触发器和磷脂膜中的小干扰RNA转染:数百万个原子,微秒的分子动力学模拟。

获取原文
获取原文并翻译 | 示例

摘要

Biological cell membranes provide mechanical stability to cells and understanding their structure, dynamics and mechanics are important biophysics problems. Experiments coupled with computational methods such as molecular dynamics (MD) have provided insight into the physics of membranes. We use long-time and large-scale MD simulations to study the structure, dynamics and mechanical behavior of membranes.;We investigate shock-induced collapse of nanobubbles in water using MD simulations based on a reactive force field. We observe a focused jet at the onset of bubble shrinkage and a secondary shock wave upon bubble collapse. The jet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. Shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. We also investigate molecular mechanisms of poration in lipid bilayers due to shock-induced collapse of nanobubbles. Our multimillion-atom MD simulations reveal that the jet impact generates shear flow of water on bilayer leaflets and pressure gradients across them. This transiently enhances the bilayer permeability by creating nanopores through which water molecules translocate rapidly across the bilayer. Effects of nanobubble size and temperature on the porosity of lipid bilayers are examined.;The second research project focuses on cholesterol (CHOL) dynamics in phospholipid bilayers. Several experimental and computational studies have been performed on lipid bilayers consisting of dipalmitoylphosphatidylcholine (DPPC) and CHOL molecules. CHOL interleaflet transport (flip-flop) plays an important role in interleaflet coupling and determining CHOL flip-flop rate has been elusive. Various studies report that the rate ranges between milliseconds to seconds. We calculate CHOL flip-flop rates by performing a 15 mus all-atom MD simulation of a DPPC-CHOL bilayer. We find that the CHOL flip-flop rates are on the sub microsecond timescale. These results are verified by performing various independent parallel replica (PR) simulations. Our PR simulations provide significant boost in sampling of the flip-flop events. We observe that the CHOL flip-flop can induce membrane order, regulate membrane-bending energy, and facilitate membrane relaxation. The rapid flip-flop rates reported here have important implications for the role of CHOL in mechanical properties of cell membranes, formation of domains, and maintaining CHOL concentration asymmetry in plasma membrane. Our PR approach can reach submillisecond time scales and bridge the gap between MD simulations and Nuclear Magnetic Resonance (NMR) experiments on CHOL flip-flop dynamics in membranes.;The last project deals with transfection barriers encountered by a bare small interfering RNA (siRNA) in a phospholipid bilayer. SiRNA molecules play a pivotal role in therapeutic applications. A key limitation to the widespread implementation of siRNA-based therapeutics is the difficulty of delivering siRNA-based drugs to cells. We have examined structural and mechanical barriers to siRNA passage across a phospholipid bilayer using all-atom MD simulations. We find that the electrostatic interaction between the anionic siRNA and head groups of phospholipid molecules induces a phase transformation from the liquid crystalline to ripple phase. Steered MD simulations reveal that the siRNA transfection through the ripple phase requires a force of ∼ 1.5 nN.
机译:生物细胞膜为细胞提供机械稳定性,并了解其结构,动力学和力学是重要的生物物理学问题。实验与诸如分子动力学(MD)之类的计算方法相结合,使人们对膜的物理学有了更深入的了解。我们使用长期和大规模的MD模拟来研究膜的结构,动力学和力学行为。;我们使用基于反作用力场的MD模拟研究了水中纳米气泡的冲击诱导塌陷。我们在气泡收缩开始时观察到聚焦射流,并且在气泡崩溃时观察到二次冲击波。正如在微米到毫米大小的气泡的实验中所观察到的那样,射流的长度与纳米气泡的半径成线性比例。冲击引起剧烈的结构变化,包括以1 km / s的粒子速度出现的类似于VII型冰的结构图案。初始冰VII的形成和计算的Hugoniot曲线与实验结果非常吻合。我们还研究了由于震动引起的纳米气泡坍塌而在脂质双层中发生渗透的分子机制。我们的数百万个原子的MD模拟表明,射流的撞击会在双层小叶上产生水的剪切流,并在整个小叶上产生压力梯度。通过创建纳米孔,水分子通过该纳米孔快速移位穿过双层,从而暂时增强了双层的渗透性。研究了纳米气泡的大小和温度对脂质双层的孔隙率的影响。;第二个研究项目集中在磷脂双层中的胆固醇(CHOL)动力学。已经对由二棕榈酰磷脂酰胆碱(DPPC)和CHOL分子组成的脂质双层进行了一些实验和计算研究。 CHOL的小叶间转运(触发器)在小叶间的耦合中起着重要的作用,而确定CHOL的触发器速率一直难以捉摸。各种研究报告说,速率介于毫秒到秒之间。我们通过对DPPC-CHOL双层进行15 mus全原子MD模拟来计算CHOL触发器速率。我们发现CHOL触发器的速率在亚微秒级。通过执行各种独立的并行副本(PR)仿真,可以验证这些结果。我们的PR仿真可显着提高触发器事件的采样。我们观察到,CHOL触发器可以诱导膜有​​序,调节膜弯曲能量并促进膜松弛。此处报道的快速翻转速率对CHOL在细胞膜机械特性,结构域的形成以及维持质膜中CHOL浓度不对称性方面的作用具有重要意义。我们的PR方法可以达到亚毫秒级的时标,并弥合MD模拟与膜CHOL触发器动力学上的核磁共振(NMR)实验之间的差距。最后一个项目涉及裸露的小干扰RNA(siRNA)遇到的转染障碍。在磷脂双层中。 SiRNA分子在治疗应用中起着关键作用。广泛使用基于siRNA的疗法的一个关键限制是难以将基于siRNA的药物传递到细胞中。我们已经使用全原子MD模拟技术检查了siRNA穿过磷脂双层的结构和机械障碍。我们发现,阴离子siRNA与磷脂分子的头部之间的静电相互作用诱导了从液晶到波纹相的相变。定向MD模拟显示,通过波纹阶段进行siRNA转染需要约1.5 nN的力。

著录项

  • 作者

    Choubey, Amit.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Biophysics General.;Physics General.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号