首页> 美国卫生研究院文献>Biotechnology for Biofuels >Deletion of a single glycosyltransferase in Caldicellulosiruptor bescii eliminates protein glycosylation and growth on crystalline cellulose
【2h】

Deletion of a single glycosyltransferase in Caldicellulosiruptor bescii eliminates protein glycosylation and growth on crystalline cellulose

机译:Caldicellulosiruptor bescii中单个糖基转移酶的删除消除了蛋白质糖基化和结晶纤维素上的生长

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Protein glycosylation pathways have been identified in a variety of bacteria and are best understood in pathogens and commensals in which the glycosylation targets are cell surface proteins, such as S layers, pili, and flagella. In contrast, very little is known about the glycosylation of bacterial enzymes, especially those secreted by cellulolytic bacteria. Caldicellulosiruptor bescii secretes several unique synergistic multifunctional biomass-degrading enzymes, notably cellulase A which is largely responsible for this organism’s ability to grow on lignocellulosic biomass without the conventional pretreatment. It was recently discovered that extracellular CelA is heavily glycosylated. In this work, we identified an O-glycosyltransferase in the C. bescii chromosome and targeted it for deletion. The resulting mutant was unable to grow on crystalline cellulose and showed no detectable protein glycosylation. Multifunctional biomass-degrading enzymes in this strain were rapidly degraded. With the genetic tools available in C. bescii, this system represents a unique opportunity to study the role of bacterial enzyme glycosylation as well an investigation of the pathway for protein glycosylation in a non-pathogen.Electronic supplementary materialThe online version of this article (10.1186/s13068-018-1266-x) contains supplementary material, which is available to authorized users.
机译:蛋白糖基化途径已在多种细菌中得到鉴定,并且在病原体和共生病中得到了最好的理解,其中糖基化的靶标是细胞表面蛋白,例如S层,菌毛和鞭毛。相反,关于细菌酶,特别是纤维素分解细菌分泌的酶的糖基化知之甚少。 Caldicellulosiruptor bescii分泌几种独特的协同多功能生物质降解酶,尤其是纤维素酶A,这是这种生物无需常规预处理即可在木质纤维素生物质上生长的能力的重要原因。最近发现,细胞外CelA被高度糖基化。在这项工作中,我们确定了C. bescii染色体中的O-糖基转移酶,并将其靶向缺失。所得突变体不能在结晶纤维素上生长,并且没有显示可检测的蛋白质糖基化。该菌株中的多功能生物质降解酶被迅速降解。借助C.bescii中可用的遗传工具,该系统为研究细菌酶糖基化的作用以及研究非病原体中蛋白质糖基化途径提供了独特的机会。电子补充材料本文的在线版本(10.1186 / s13068-018-1266-x)包含补充材料,授权用户可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号