首页> 外文期刊>Applied Microbiology >Deletion of a Peptidylprolyl Isomerase Gene Results in the Inability of Caldicellulosiruptor bescii To Grow on Crystalline Cellulose without Affecting Protein Glycosylation or Growth on Soluble Substrates
【24h】

Deletion of a Peptidylprolyl Isomerase Gene Results in the Inability of Caldicellulosiruptor bescii To Grow on Crystalline Cellulose without Affecting Protein Glycosylation or Growth on Soluble Substrates

机译:肽丙烯丙基异构酶基因的缺失导致Caldicellulosiruptor Bescii的无法在结晶纤维素上生长而不影响蛋白质糖基化或增长的可溶性基材

获取原文
       

摘要

Caldicellulosiruptor bescii secretes a large number of complementary multifunctional enzymes with unique activities for biomass deconstruction. The most abundant enzymes in the C. bescii secretome are found in a unique gene cluster containing a glycosyl transferase (GT39) and a putative peptidyl prolyl cis-trans isomerase. Deletion of the glycosyl transferase in this cluster resulted in loss of detectable protein glycosylation in C. bescii , and its activity has been shown to be responsible for the glycosylation of the proline-threonine rich linkers found in many of the multifunctional cellulases. The presence of a putative peptidyl prolyl cis-trans isomerase within this gene cluster suggested that it might also play a role in cellulase modification. Here, we identify this gene as a putative prsA prolyl cis-trans isomerase. Deletion of prsA2 leads to the inability of C. bescii to grow on insoluble substrates such as Avicel, the model cellulose substrate, while exhibiting no differences in phenotype with the wild-type strain on soluble substrates. Finally, we provide evidence that the prsA2 gene is likely needed to increase solubility of multifunctional cellulases and that this unique gene cluster was likely acquired by members of the Caldicellulosiruptor genus with a group of genes to optimize the production and activity of multifunctional cellulases.IMPORTANCE Caldicellulosiruptor has the ability to digest complex plant biomass without pretreatment and have been engineered to convert biomass, a sustainable, carbon neutral substrate, to fuels. Their strategy for deconstructing plant cell walls relies on an interesting class of cellulases consisting of multiple catalytic modules connected by linker regions and carbohydrate binding modules. The best studied of these enzymes, CelA, has a unique deconstruction mechanism. CelA is located in a cluster of genes that likely allows for optimal expression, secretion, and activity. One of the genes in this cluster is a putative isomerase that modifies the CelA protein. In higher eukaryotes, these isomerases are essential for the proper folding of glycoproteins in the endoplasmic reticulum, but little is known about the role of isomerization in cellulase activity. We show that the stability and activity of CelA is dependent on the activity of this isomerase.
机译:Caldicellulosiruptor Bescii分泌大量互补的多官能酶,具有独特的生物质解构活动。在含有糖基转移酶(GT39)的独特基因簇中,C.Bescii沉淀中最丰富的酶。缺失该簇中的糖基转移酶导致C.Bescii中可检测的蛋白质糖基化损失,并且其活性已被证明是对许多多官能纤维素酶中发现的脯氨酸苏氨酸富含接头的糖基化负责。该基因簇内的推定肽基脯氨酰Cis-Trans异构酶的存在表明它也可能在纤维素酶改性中起作用。在此,我们将该基因鉴定为推定的PRSA脯氨酰CIS-反式异构酶。 PRSA2的缺失导致C. Bescii的无能为力在不溶性底物上生长,例如Avicel,模型纤维素底物,同时表现出在可溶性基材上具有野生型菌株的表型的差异。最后,我们提供了可能需要增加多功能纤维素酶的PRSA2基因,并且可以通过CaldiCellosupluper属的溶解度增加溶解度,并且由一组基因获得多功能纤维素酶的产生和活性。分析能够在没有预处理的情况下消化复杂的植物生物质,并且已经设计成转换生物质,可持续的碳中性基材,燃料。它们的解构植物细胞壁的策略依赖于由通过接头区域和碳水化合物结合模块连接的多种催化模块组成的有趣类纤维素。最好的研究这些酶,CELA,具有独特的解构机制。 CELA位于一个可能允许最佳表达,分泌和活动的基因群中。该簇中的一种基因是一种调节的异构酶,其改变米拉蛋白质。在更高的真核时,这些异构酶对于在内质网中的糖蛋白正常折叠的适当折叠是必不可少的,但是关于异构化在纤维素酶活性中的作用很少。我们表明米拉的稳定性和活性依赖于该异构酶的活性。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号