首页> 美国卫生研究院文献>BMC Bioinformatics >Improving protein fold recognition using the amalgamation of evolutionary-based and structural based information
【2h】

Improving protein fold recognition using the amalgamation of evolutionary-based and structural based information

机译:通过融合基于进化的信息和基于结构的信息来改善蛋白质折叠识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deciphering three dimensional structure of a protein sequence is a challenging task in biological science. Protein fold recognition and protein secondary structure prediction are transitional steps in identifying the three dimensional structure of a protein. For protein fold recognition, evolutionary-based information of amino acid sequences from the position specific scoring matrix (PSSM) has been recently applied with improved results. On the other hand, the SPINE-X predictor has been developed and applied for protein secondary structure prediction. Several reported methods for protein fold recognition have only limited accuracy. In this paper, we have developed a strategy of combining evolutionary-based information (from PSSM) and predicted secondary structure using SPINE-X to improve protein fold recognition. The strategy is based on finding the probabilities of amino acid pairs (AAP). The proposed method has been tested on several protein benchmark datasets and an improvement of 8.9% recognition accuracy has been achieved. We have achieved, for the first time over 90% and 75% prediction accuracies for sequence similarity values below 40% and 25%, respectively. We also obtain 90.6% and 77.0% prediction accuracies, respectively, for the Extended Ding and Dubchak and Taguchi and Gromiha benchmark protein fold recognition datasets widely used for in the literature.
机译:破解蛋白质序列的三维结构是生物科学中的一项艰巨任务。蛋白质折叠识别和蛋白质二级结构预测是鉴定蛋白质三维结构的过渡步骤。对于蛋白质折叠识别,最近已应用来自位置特异性评分矩阵(PSSM)的氨基酸序列的基于进化的信息,并获得了改进的结果。另一方面,已经开发了SPINE-X预测子并将其应用于蛋白质二级结构预测。几种报道的蛋白质折叠识别方法仅具有有限的准确性。在本文中,我们开发了一种策略,将基于进化的信息(来自PSSM)与使用SPINE-X预测的二级结构相结合,以提高蛋白质折叠识别能力。该策略基于找到氨基酸对(AAP)的概率。该方法已经在多个蛋白质基准数据集上进行了测试,识别精度提高了8.9%。对于低于40%和25%的序列相似性值,我们首次实现了超过90%和75%的预测准确性。对于扩展的Ding和Dubchak以及Taguchi和Gromiha基准蛋白质折叠识别数据集,我们也分别获得了90.6%和77.0%的预测准确性,这些文献广泛用于文献中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号