首页> 美国卫生研究院文献>BMC Bioinformatics >Candidate gene prioritization by network analysis of differential expression using machine learning approaches
【2h】

Candidate gene prioritization by network analysis of differential expression using machine learning approaches

机译:使用机器学习方法通​​过差异表达的网络分析对候选基因进行优先排序

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundDiscovering novel disease genes is still challenging for diseases for which no prior knowledge - such as known disease genes or disease-related pathways - is available. Performing genetic studies frequently results in large lists of candidate genes of which only few can be followed up for further investigation. We have recently developed a computational method for constitutional genetic disorders that identifies the most promising candidate genes by replacing prior knowledge by experimental data of differential gene expression between affected and healthy individuals.To improve the performance of our prioritization strategy, we have extended our previous work by applying different machine learning approaches that identify promising candidate genes by determining whether a gene is surrounded by highly differentially expressed genes in a functional association or protein-protein interaction network.
机译:背景技术对于尚无先验知识(例如已知疾病基因或疾病相关途径)的疾病,发现新的疾病基因仍然具有挑战性。进行遗传研究通常会导致大量候选基因,只有很少的候选基因可以进行进一步研究。我们最近开发了一种用于结构性遗传疾病的计算方法,该方法可以通过用受影响和健康个体之间差异基因表达的实验数据代替先验知识来识别最有前途的候选基因。为提高优先排序策略的性能,我们扩展了先前的工作通过应用不同的机器学习方法来确定有希望的候选基因,方法是确定某个基因是否被功能关联或蛋白质-蛋白质相互作用网络中的高差异表达基因包围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号