首页> 美国卫生研究院文献>BMC Bioinformatics >Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method
【2h】

Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method

机译:用稳定的基质方法生成描述生物过程序列特异性的定量模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundMany processes in molecular biology involve the recognition of short sequences of nucleic-or amino acids, such as the binding of immunogenic peptides to major histocompatibility complex (MHC) molecules. From experimental data, a model of the sequence specificity of these processes can be constructed, such as a sequence motif, a scoring matrix or an artificial neural network. The purpose of these models is two-fold. First, they can provide a summary of experimental results, allowing for a deeper understanding of the mechanisms involved in sequence recognition. Second, such models can be used to predict the experimental outcome for yet untested sequences. In the past we reported the development of a method to generate such models called the Stabilized Matrix Method (SMM). This method has been successfully applied to predicting peptide binding to MHC molecules, peptide transport by the transporter associated with antigen presentation (TAP) and proteasomal cleavage of protein sequences.
机译:背景技术分子生物学中的许多过程都涉及对核酸或氨基酸短序列的识别,例如免疫原性肽与主要组织相容性复合物(MHC)分子的结合。根据实验数据,可以构建这些过程的序列特异性模型,例如序列基序,评分矩阵或人工神经网络。这些模型的目的是双重的。首先,他们可以提供实验结果的摘要,从而可以更深入地了解序列识别中涉及的机制。其次,此类模型可用于预测尚未测试的序列的实验结果。在过去,我们报告了一种生成这种模型的方法的发展,称为稳定矩阵法(SMM)。此方法已成功应用于预测肽与MHC分子的结合,与抗原呈递(TAP)相关的转运蛋白的肽转运以及蛋白序列的蛋白酶体切割。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号