首页> 美国卫生研究院文献>BMC Neuroscience >Neural computation of visual imaging based on Kronecker product in the primary visual cortex
【2h】

Neural computation of visual imaging based on Kronecker product in the primary visual cortex

机译:基于Kronecker积的初级视觉皮层视觉成像的神经计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundWhat kind of neural computation is actually performed by the primary visual cortex and how is this represented mathematically at the system level? It is an important problem in the visual information processing, but has not been well answered. In this paper, according to our understanding of retinal organization and parallel multi-channel topographical mapping between retina and primary visual cortex V1, we divide an image into orthogonal and orderly array of image primitives (or patches), in which each patch will evoke activities of simple cells in V1. From viewpoint of information processing, this activated process, essentially, involves optimal detection and optimal matching of receptive fields of simple cells with features contained in image patches. For the reconstruction of the visual image in the visual cortex V1 based on the principle of minimum mean squares error, it is natural to use the inner product expression in neural computation, which then is transformed into matrix form.
机译:背景技术初级视觉皮层实际上执行哪种神经计算,这在系统级别上如何用数学表示?这是视觉信息处理中的重要问题,但尚未得到很好的解答。在本文中,根据我们对视网膜组织以及视网膜和主视觉皮层V1之间的并行多通道地形图的了解,我们将图像分为正交且有序的图像基元(或斑块)阵列,其中每个斑块都会引起活动V1中的简单单元格。从信息处理的角度来看,此激活过程本质上涉及对简单细胞的感受野和图像斑块中包含的特征进行最佳检测和最佳匹配。为了基于最小均方误差的原理在视觉皮层V1中重建视觉图像,在神经计算中使用内积表达式是很自然的,然后将其转换为矩阵形式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号