首页> 美国卫生研究院文献>The Journal of Physiology >Impaired sinoatrial node function and increased susceptibility to atrial fibrillation in mice lacking natriuretic peptide receptor C
【2h】

Impaired sinoatrial node function and increased susceptibility to atrial fibrillation in mice lacking natriuretic peptide receptor C

机译:缺乏利钠肽受体C的小鼠窦房结功能受损对房颤的敏感性增加

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Natriuretic peptides (NPs) are critical regulators of the cardiovascular system that are currently viewed as possible therapeutic targets for the treatment of heart disease. Recent work demonstrates potent NP effects on cardiac electrophysiology, including in the sinoatrial node (SAN) and atria. NPs elicit their effects via three NP receptors (NPR-A, NPR-B and NPR-C). Among these receptors, NPR-C is poorly understood. Accordingly, the goal of this study was to determine the effects of NPR-C ablation on cardiac structure and arrhythmogenesis. Cardiac structure and function were assessed in wild-type (NPR-C+/+) and NPR-C knockout (NPR-C−/−) mice using echocardiography, intracardiac programmed stimulation, patch clamping, high-resolution optical mapping, quantitative polymerase chain reaction and histology. These studies demonstrate that NPR-C−/− mice display SAN dysfunction, as indicated by a prolongation (30%) of corrected SAN recovery time, as well as an increased susceptibility to atrial fibrillation (6% in NPR-C+/+ vs. 47% in NPR-C−/−). There were no differences in SAN or atrial action potential morphology in NPR-C−/− mice; however, increased atrial arrhythmogenesis in NPR-C−/− mice was associated with reductions in SAN (20%) and atrial (15%) conduction velocity, as well as increases in expression and deposition of collagen in the atrial myocardium. No differences were seen in ventricular arrhythmogenesis or fibrosis in NPR-C−/− mice. This study demonstrates that loss of NPR-C results in SAN dysfunction and increased susceptibility to atrial arrhythmias in association with structural remodelling and fibrosis in the atrial myocardium. These findings indicate a critical protective role for NPR-C in the heart.Key points class="unordered" style="list-style-type:disc"> Natriuretic peptides (NPs) elicit their effects via multiple NP receptors (including NPR-A, NPR-B and NPR-C, with NPR-C being relatively poorly understood). We have studied the effects of NPR-C ablation on cardiac structure, function and arrhythmogenesis using NPR-C knockout (NPR-C−/−) mice. NPR-C−/− mice are characterized by sinoatrial node (SAN) dysfunction and a profound increase in susceptibility to atrial fibrillation. Increased susceptibility to arrhythmias in NPR-C−/− mice was associated with slowed electrical conduction in the SAN as well as the right and left atria due to enhanced collagen expression and deposition in the atria (structural remodelling), but without changes in action potential morphology (electrical remodelling) in isolated SAN or atrial myocytes. This study demonstrates a critical protective role for NPR-C in the heart. class="head no_bottom_margin" id="__sec2title">IntroductionNatriuretic peptides (NPs), including atrial (ANP), B-type (BNP) and C-type (CNP) NPs, are a group of powerful cardioprotective hormones that play a critical role in the maintenance of cardiovascular homeostasis in normal conditions and in cardiovascular disease (Levin et al. ; Potter et al. ). In fact, due to their potent effects in the cardiovascular system, NPs are currently in use (nesiritide) (Cataliotti & Burnett, ; Lee & Burnett, ) or in development (CD-NP) (Lee et al. ; Rose, ) for the treatment of heart failure. Despite this, current understanding of the distinct roles of specific NP receptors (NPRs) in the heart is incomplete, which may partially explain the lack of clinical efficacy of some NPs currently in use (Burnett & Korinek, ; O'Connor et al. ).There are three known NPRs denoted NPR-A, NPR-B and NPR-C (Lucas et al. ; Potter et al. ; Rose & Giles, ). Most attention has been given to NPR-A and NPR-B, which are well known particulate guanylyl cyclase (GC) receptors that mediate increases in cGMP upon receptor activation (Potter et al. ). Most physiological effects of NPs have been attributed to these receptors. Conversely, much less is known about NPR-C, which is not directly coupled to GC signalling. NPR-C was originally classified as a ‘clearance receptor’ with no signalling function (Maack et al. ); however, it is now known that NPR-C is able to activate inhibitory G proteins (Gi) and modulate adenylyl cyclase (AC) and phospholipase C signalling (Anand-Srivastava & Trachte, ; Anand-Srivastava, ). This coupling to Gi occurs via specific Gi-activator domains located within the 37 amino acid intracellular portion of NPR-C (Pagano & Anand-Srivastava, ; Zhou & Murthy, href="#b67" rid="b67" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897154">2003). NPR-C is able to bind all NPs with comparable affinity (Anand-Srivastava & Trachte, href="#b2" rid="b2" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897157">1993); thus, a more complete understanding of the role(s) of this receptor in the heart is of critical importance and may impact the future therapeutic use of NPs in heart disease.We have shown that NPs have robust effects on cardiac electrophysiology and provided the first clear evidence that NPR-C can mediate some of these effects (Rose et al. href="#b54" rid="b54" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897038">2003, href="#b55" rid="b55" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897106">2004; Rose & Giles, href="#b53" rid="b53" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897140">2008; Azer et al. href="#b3" rid="b3" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897159">2012, href="#b4" rid="b4" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897115">2014; Springer et al. href="#b60" rid="b60" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897142">2012). Specifically, we have found that in the presence of acute β-adrenergic receptor activation, BNP and CNP can potently reduce heart rate (HR) by decreasing spontaneous action potential (AP) firing in the sinoatrial node (SAN) (Rose et al. href="#b55" rid="b55" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897151">2004; Azer et al. href="#b3" rid="b3" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897053">2012). This occurs in conjunction with a reduction in diastolic depolarization slope (DD slope) and L-type Ca2+ current in SAN myocytes. We have also demonstrated, using high-resolution optical mapping, that NPs can slow conduction in the SAN and atrial myocardium by activating NPR-C (Azer et al. href="#b4" rid="b4" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897044">2014). These inhibitory effects of NPs on HR, SAN AP firing and SAN/atrial conduction are completely absent in NPR-C knockout mice (NPR-C−/−) (Azer et al. href="#b3" rid="b3" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897035">2012, href="#b4" rid="b4" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897125">2014). These observations conclusively demonstrate that NPR-C is an important mediator of electrophysiological effects of NPs in the heart, including in the SAN and atria.Although our previous work demonstrates the involvement of NPR-C in mediating acute electrophysiological effects of NPs in the heart, the consequences of NPR-C ablation on cardiac structure and arrhythmogenesis have not been investigated. This constitutes a clear gap in our understanding of this receptor and of the physiology of NPs in the heart. Accordingly, the goal of the present study was to determine the consequences of the loss of NPR-C in the heart using NPR-C−/− mice. Our novel data demonstrate that NPR-C−/− mice are characterized by SAN dysfunction and increased susceptibility to atrial fibrillation (AF) in association with impaired electrical conduction and enhanced atrial fibrosis (structural remodelling). These findings indicate that NPR-C plays a critical protective role in the heart by preventing adverse structural remodelling due to fibrosis.
机译:利钠肽(NP)是心血管系统的关键调节剂,目前被视为治疗心脏病的可能治疗靶标。最近的工作证明了NP对心脏电生理的有效作用,包括在窦房结(SAN)和心房。 NP通过三个NP受体(NPR-A,NPR-B和NPR-C)引起其作用。在这些受体中,对NPR-C的了解很少。因此,本研究的目的是确定NPR-C消融对心脏结构和心律失常的影响。使用超声心动图,心内膜成像法评估野生型(NPR-C + / + )和NPR-C敲除(NPR-C -/-)小鼠的心脏结构和功能程序化刺激,膜片钳制,高分辨率光学作图,定量聚合酶链反应和组织学。这些研究表明,NPR-C -/-小鼠表现出SAN功能障碍,如纠正的SAN恢复时间延长(30%)以及对房颤的敏感性增加(在6%的情况下) NPR-C + / + ,而NPR-C -/-为47%)。 NPR-C -/-小鼠的SAN或心房动作电位形态无差异。然而,NPR-C -/-小鼠的心律失常增加与SAN(20%)和心房(15%)传导速度降低以及胶原蛋白表达和沉积增加有关。心房心肌。 NPR-C -/-小鼠的心律失常或纤维化没有差异。这项研究表明,NPR-C的丧失会导致SAN功能障碍和对心律失常的敏感性增加,并伴有心房心肌的结构重塑和纤维化。这些发现表明,NPR-C在心脏中起着至关重要的保护作用。要点 class =“ unordered” style =“ list-style-type:disc”> <!-list-behavior = unordered prefix-word = mark -type = disc max-label-size = 0-> 利钠肽(NP)通过多种NP受体(包括NPR-A,NPR-B和NPR-C引起其作用,而NPR-C相对较差)了解)。 我们已经使用NPR-C基因敲除(NPR-C -/-)小鼠研究了NPR-C消融对心脏结构,功能和心律失常的影响。 NPR-C -/-小鼠的特征是窦房结(SAN)功能异常,并且对房颤的敏感性大大提高。 NPR-C -/-小鼠对心律失常的敏感性增加与SAN以及左右心房电导率的降低有关,这是由于胶原蛋白表达和沉积增强所致在心房中(结构重塑),但是在分离的SAN或心房肌细胞中动作电位形态(电重塑)没有变化。 这项研究证明了NPR-C在心脏中的关键保护作用。 class =“ head no_bottom_margin” id =“ __ sec2title”>简介利钠肽(NP),包括心房(ANP),B型(BNP)和C型( CNP)NPs是一组强大的心脏保护激素,在正常情况下和心血管疾病中在维持心血管稳态方面起着至关重要的作用(Levin等人; Potter等人)。实际上,由于其在心血管系统中的强效作用,NPs目前正用于(奈西利肽)(Cataliotti&Burnett,; Lee&Burnett,)或正在开发中(CD-NP)(Lee et al .; Rose,)心力衰竭的治疗。尽管如此,对心脏中特定NP受体(NPR)的不同作用的当前了解仍不完全,这可能部分解释了当前使用的某些NP缺乏临床疗效的原因(Burnett&Korinek,O'Connor等)。有三种已知的NPR,分别表示为NPR-A,NPR-B和NPR-C(Lucas等人; Potter等人; Rose&Giles,)。 NPR-A和NPR-B最为关注,它们是众所周知的颗粒鸟嘌呤环化酶(GC)受体,可在受体激活后介导cGMP的增加(Potter等)。 NP的大多数生理作用已经归因于这些受体。相反,对于NPR-C知之甚少,它不直接与GC信号耦合。 NPR-C最初被归类为没有信号传导功能的``清除受体''(Maack等);然而,现在已知NPR-C能够激活抑制性G蛋白(Gi)并调节腺苷酸环化酶(AC)和磷脂酶C信号传导(Anand-Srivastava&Trachte,; Anand-Srivastava,)。这种与Gi的偶联是通过位于NPR-C的37个氨基酸的细胞内部分内的特定Gi激活剂域发生的(Pagano和Anand-Srivastava,Zhou和Murthy,href="#b67" rid="b67" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897154"> 2003 )。 NPR-C能够以可比的亲和力绑定所有NP(Anand-Srivastava&Trachte,href="#b2" rid="b2" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897157"> 1993 );因此,对这种受体在心脏中的作用的更全面的了解至关重要,并且可能会影响NP在心脏病中的未来治疗用途。我们已经证明NP对心脏电生理学具有强大的作用,并提供了第一个清楚的证据表明NPR-C可以介导其中一些作用(Rose等人,href="#b54" rid="b54" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897038"> 2003 , href="#b55" rid="b55" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897106"> 2004 ; Rose&Giles,href =“#b53” rid =“ b53” class =“ bibr popnode tag_hotlink tag_tooltip” id =“ __ tag_434897140”> 2008 ; Azer等。href =“#b3” rid =“ b3” class =“ bibr popnode tag_hotlink tag_tooltip” id =“ __ tag_434897159” > 2012 ,href="#b4" rid="b4" class=" bibr popnode tag_hotlink tag_tooltip" id="__tag_434897115"> 2014 ; Springer等。href =“# b60“ rid =” b60“ class =” bibr popnode tag_hotlink tag_tooltip“ id =” __ tag_434897142“> 2012 )。具体而言,我们发现在存在急性β-肾上腺素受体激活的情况下,BNP和CNP可以通过降低窦房结(SAN)中的自发动作电位(AP)激发来有效降低心率(HR)(Rose等人。 a href =“#b55” rid =“ b55” class =“ bibr popnode tag_hotlink tag_tooltip” id =“ __ tag_434897151”> 2004 ; Azer等。href =“#b3” rid =“ b3”类=“ bibr popnode tag_hotlink tag_tooltip” id =“ __ tag_434897053”> 2012 )。这与SAN心肌细胞舒张期去极化斜率(DD斜率)的降低和L型Ca 2 + 电流的降低有关。我们还证明了使用高分辨率光学映射,NPs可以通过激活NPR-C来减慢SAN和心房心肌的传导(Azer等人。href =“#b4” rid =“ b4” class =“ bibr popnode tag_hotlink tag_tooltip“ id =” __ tag_434897044“> 2014 )。 NP对HR,SAN AP放电和SAN /心房传导的抑制作用在NPR-C基因敲除小鼠(NPR-C -/-)中是完全不存在的(Azer等人href =“ #b3“ rid =” b3“ class =” bibr popnode tag_hotlink tag_tooltip“ id =” __ tag_434897035“> 2012 ,href =”#b4“ rid =” b4“ class =” bibr popnode tag_hotlink tag_tooltip“ id =“ __ tag_434897125”> 2014 )。这些观察结果证明NPR-C是心脏(包括SAN和心房)中NP的电生理作用的重要介体。尽管我们以前的工作表明NPR-C参与了心脏NP的急性电生理作用的介导, NPR-C消融对心脏结构和心律失常的影响尚未得到研究。这构成了我们对这种受体和心脏中NPs生理的理解的明显差距。因此,本研究的目的是确定使用NPR-C -/-小鼠心脏中NPR-C丢失的后果。我们的新数据表明,NPR-C -/-小鼠的特征在于SAN功能障碍和对心房纤颤(AF)的敏感性增加,并伴有导电性受损和心房纤维化增强(结构重塑)。这些发现表明,NPR-C通过防止由于纤维化引起的不良结构重塑,在心脏中起着至关重要的保护作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号