首页> 美国卫生研究院文献>Cancer Informatics >StickWRLD as an Interactive Visual Pre-Filter for Canceromics-Centric Expression Quantitative Trait Locus Data
【2h】

StickWRLD as an Interactive Visual Pre-Filter for Canceromics-Centric Expression Quantitative Trait Locus Data

机译:StickWRLD作为交互式视觉预过滤器用于以癌症为中心的表达定量性状基因座数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As datasets increase in complexity, the time required for analysis (both computational and human domain-expert) increases. One of the significant impediments introduced by such burgeoning data is the difficulty in knowing what features to include or exclude from statistical models. Simple tables of summary statistics rarely provide an adequate picture of the patterns and details of the dataset to enable researchers to make well-informed decisions about the adequacy of the models they are constructing. We have developed a tool, StickWRLD, which allows the user to visually browse through their data, displaying all possible correlations. By allowing the user to dynamically modify the retention parameters (both P and the residual, r), StickWRLD allows the user to identify significant correlations and disregard potential correlations that do not meet those same criteria – effectively filtering through all possible correlations quickly and identifying possible relationships of interest for further analysis. In this study, we applied StickWRLD to a semi-synthetic dataset constructed from two published human datasets. In addition to detecting high-probability correlations in this dataset, we were able to quickly identify gene–SNP correlations that would have gone undetected using more traditional approaches due to issues of low penetrance.
机译:随着数据集复杂性的增加,分析(计算和人为领域的专家)所需的时间也增加了。这种迅速发展的数据带来的重大障碍之一是难以知道要从统计模型中包括或排除哪些特征。简单的汇总统计表很少能提供有关数据集的模式和细节的足够图片,以使研究人员能够就他们所构建模型的充分性做出明智的决定。我们开发了StickWRLD工具,该工具使用户可以直观地浏览其数据,并显示所有可能的相关性。通过允许用户动态修改保留参数(P和残差,r),StickWRLD允许用户识别显着的相关性,而忽略不符合那些相同标准的潜在相关性–快速有效地过滤所有可能的相关性并确定可能的相关性感兴趣的关系以供进一步分析。在这项研究中,我们将StickWRLD应用于从两个已发布的人类数据集构建的半合成数据集。除了在此数据集中检测高概率相关性之外,我们还能够快速识别由于低渗透率问题而无法使用更传统的方法检测到的基因-SNP相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号