首页> 美国卫生研究院文献>Chemical Science >Efficient prediction of reaction paths through molecular graph and reaction network analysis
【2h】

Efficient prediction of reaction paths through molecular graph and reaction network analysis

机译:通过分子图和反应网络分析有效预测反应路径

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Despite remarkable advances in computational chemistry, prediction of reaction mechanisms is still challenging, because investigating all possible reaction pathways is computationally prohibitive due to the high complexity of chemical space. A feasible strategy for efficient prediction is to utilize chemical heuristics. Here, we propose a novel approach to rapidly search reaction paths in a fully automated fashion by combining chemical theory and heuristics. A key idea of our method is to extract a minimal reaction network composed of only favorable reaction pathways from the complex chemical space through molecular graph and reaction network analysis. This can be done very efficiently by exploring the routes connecting reactants and products with minimum dissociation and formation of bonds. Finally, the resulting minimal network is subjected to quantum chemical calculations to determine kinetically the most favorable reaction path at the predictable accuracy. As example studies, our method was able to successfully find the accepted mechanisms of Claisen ester condensation and cobalt-catalyzed hydroformylation reactions.
机译:尽管计算化学取得了显着进步,但是由于化学空间的高度复杂性,研究所有可能的反应途径在计算上都是令人望而却步的,因此对反应机理的预测仍然具有挑战性。有效预测的可行策略是利用化学启发法。在这里,我们提出了一种新颖的方法,通过结合化学理论和试探法以全自动的方式快速搜索反应路径。我们方法的关键思想是通过分子图和反应网络分析从复杂的化学空间中提取仅由有利的反应路径组成的最小反应网络。这可以通过探索连接反应物和产物的途径来实现,而这种途径具有最小的离解和键的形成,可以非常有效地完成。最后,对所得的最小网络进行量子化学计算,以可预测的精度从动力学上确定最有利的反应路径。作为实例研究,我们的方法能够成功找到克莱森酯缩合和钴催化的加氢甲酰化反应的公认机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号