首页> 美国卫生研究院文献>Translational Psychiatry >Identification and replication of RNA-Seq gene network modules associated with depression severity
【2h】

Identification and replication of RNA-Seq gene network modules associated with depression severity

机译:鉴定和复制与抑郁严重程度相关的RNA-Seq基因网络模块

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Genomic variation underlying major depressive disorder (MDD) likely involves the interaction and regulation of multiple genes in a network. Data-driven co-expression network module inference has the potential to account for variation within regulatory networks, reduce the dimensionality of RNA-Seq data, and detect significant gene-expression modules associated with depression severity. We performed an RNA-Seq gene co-expression network analysis of mRNA data obtained from the peripheral blood mononuclear cells of unmedicated MDD (n = 78) and healthy control (n = 79) subjects. Across the combined MDD and HC groups, we assigned genes into modules using hierarchical clustering with a dynamic tree cut method and projected the expression data onto a lower-dimensional module space by computing the single-sample gene set enrichment score of each module. We tested the single-sample scores of each module for association with levels of depression severity measured by the Montgomery-Åsberg Depression Scale (MADRS). Independent of MDD status, we identified 23 gene modules from the co-expression network. Two modules were significantly associated with the MADRS score after multiple comparison adjustment (adjusted p = 0.009, 0.028 at 0.05 FDR threshold), and one of these modules replicated in a previous RNA-Seq study of MDD (p = 0.03). The two MADRS-associated modules contain genes previously implicated in mood disorders and show enrichment of apoptosis and B cell receptor signaling. The genes in these modules show a correlation between network centrality and univariate association with depression, suggesting that intramodular hub genes are more likely to be related to MDD compared to other genes in a module.
机译:主要抑郁症(MDD)的基因组变异可能涉及网络中多个基因的相互作用和调控。数据驱动的共表达网络模块推断有可能解释调节网络内的变异,降低RNA-Seq数据的维数,并检测与抑郁严重程度相关的重要基因表达模块。我们对从未经药物治疗的MDD(n = 78)和健康对照(n = 79)受试者的外周血单核细胞中获得的mRNA数据进行了RNA-Seq基因共表达网络分析。在组合的MDD和HC组中,我们使用动态树割方法通过分层聚类将基因分配到模块中,并通过计算每个模块的单样本基因集富集得分将表达数据投影到低维模块空间中。我们测试了每个模块的单样本评分,以与通过蒙哥马利-奥斯伯格抑郁量表(MADRS)测得的抑郁严重程度进行关联。与MDD状态无关,我们从共表达网络中鉴定了23个基因模块。在多次比较调整后,两个模块与MADRS评分显着相关(调整后的p = 0.009,在0.05 FDR阈值下为0.028),并且其中一个模块在先前的MDD RNA-Seq研究中重复了(p = 0.03)。与MADRS相关的两个模块包含先前与情绪障碍有关的基因,并显示出凋亡和B细胞受体信号传导的丰富。这些模块中的基因显示出网络中心性和与抑郁症的单变量关联之间的相关性,这表明与模块中的其他基因相比,模块内中枢基因更可能与MDD相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号