首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Development of a LeNet-5 Gas Identification CNN Structure for Electronic Noses
【2h】

Development of a LeNet-5 Gas Identification CNN Structure for Electronic Noses

机译:开发用于电子鼻子的LeNet-5气体识别CNN结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new LeNet-5 gas identification convolutional neural network structure for electronic noses is proposed and developed in this paper. Inspired by the tremendous achievements made by convolutional neural networks in the field of computer vision, the LeNet-5 was adopted and improved for a 12-sensor array based electronic nose system. Response data of the electronic nose to different concentrations of CO, CH4 and their mixtures were acquired by an automated gas distribution and test system. By adjusting the parameters of the CNN structure, the gas LeNet-5 was improved to recognize the three categories of CO, CH4 and their mixtures omitting the concentration influences. The final gas identification accuracy rate reached 98.67% with the unused data as test set by the improved gas LeNet-5. Comparison with results of Multiple Layer Perceptron neural networks and Probabilistic Neural Network verifies the improvement of recognition rate while with the same level of time cost, which proved the effectiveness of the proposed approach.
机译:提出并开发了一种新的电子鼻LeNet-5气体识别卷积神经网络结构。受到卷积神经网络在计算机视觉领域取得的巨大成就的启发,LeNet-5被采用并改进了基于12传感器阵列的电子鼻系统。通过自动气体分配和测试系统获取电子鼻对不同浓度的CO,CH4及其混合物的响应数据。通过调整CNN结构的参数,改进了LeNet-5气体以识别三类CO,CH4及其混合物,而忽略了浓度影响。最终的气体识别准确率达到98.67%,其中未使用的数据作为改进的气体LeNet-5的测试集。与多层感知器神经网络和概率神经网络的结果进行比较,验证了在相同时间成本水平下识别率的提高,证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号