首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Arabidopsis thaliana Polar Glycerolipid Profiling by Thin Layer Chromatography (TLC) Coupled with Gas-Liquid Chromatography (GLC)
【2h】

Arabidopsis thaliana Polar Glycerolipid Profiling by Thin Layer Chromatography (TLC) Coupled with Gas-Liquid Chromatography (GLC)

机译:薄层色谱法(TLC)和气液色谱法(GLC)拟南芥极性甘油脂谱分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biological membranes separate cells from the environment. From a single cell to multicellular plants and animals, glycerolipids, such as phosphatidylcholine or phosphatidylethanolamine, form bilayer membranes which act as both boundaries and interfaces for chemical exchange between cells and their surroundings. Unlike animals, plant cells have a special organelle for photosynthesis, the chloroplast. The intricate membrane system of the chloroplast contains unique glycerolipids, namely glycolipids lacking phosphorus: monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG)4. The roles of these lipids are beyond simply structural. These glycolipids and other glycerolipids were found in the crystal structures of photosystem I and II indicating the involvement of glycerolipids in photosynthesis8,11. During phosphate starvation, DGDG is transferred to extraplastidic membranes to compensate the loss of phospholipids9,12.Much of our knowledge of the biosynthesis and function of these lipids has been derived from a combination of genetic and biochemical studies with Arabidopsis thaliana14. During these studies, a simple procedure for the analysis of polar lipids has been essential for the screening and analysis of lipid mutants and will be outlined in detail. A leaf lipid extract is first separated by thin layer chromatography (TLC) and glycerolipids are stained reversibly with iodine vapor. The individual lipids are scraped from the TLC plate and converted to fatty acyl methylesters (FAMEs), which are analyzed by gas-liquid chromatography coupled with flame ionization detection (FID-GLC) (Figure 1). This method has been proven to be a reliable tool for mutant screening. For example, the tgd1,2,3,4 endoplasmic reticulum-to-plastid lipid trafficking mutants were discovered based on the accumulation of an abnormal galactoglycerolipid: trigalactosyldiacylglycerol (TGDG) and a decrease in the relative amount of 18:3 (carbons : double bonds) fatty acyl groups in membrane lipids 3,13,18,20. This method is also applicable for determining enzymatic activities of proteins using lipids as substrate6.
机译:生物膜将细胞与环境分开。从单细胞到多细胞动植物,甘油脂(例如磷脂酰胆碱或磷脂酰乙醇胺)形成双层膜,其既充当边界又充当细胞及其周围环境之间化学交换的界面。与动物不同,植物细胞具有光合作用的特殊细胞器叶绿体。叶绿体的复杂膜系统包含独特的甘油脂,即缺乏磷的糖脂:单半乳糖基二酰基甘油(MGDG),二半乳糖基二酰基甘油(DGDG),磺基喹喔基二酰基甘油(sQDG) 4 。这些脂质的作用不仅仅是结构上的。在光系统I和II的晶体结构中发现了这些糖脂和其他甘油脂,表明甘油脂参与了光合作用 8,11 。在磷酸盐饥饿期间,DGDG被转移到质膜外以补偿磷脂的损失 9,12 。我们对这些脂质的生物合成和功能的许多了解是通过遗传和生化研究相结合获得的与拟南芥 14 。在这些研究中,用于分析极性脂质的简单程序对于脂质突变体的筛选和分析至关重要,并将对其进行详细概述。首先通过薄层色谱法(TLC)分离叶脂提取物,并用碘蒸气可逆地染色甘油脂。从TLC板上刮下单个脂质,并将其转化为脂肪酰基甲基酯(FAME),然后通过气液色谱法结合火焰离子化检测(FID-GLC)对其进行分析(图1)。该方法已被证明是用于突变筛选的可靠工具。例如,基于异常的半乳糖甘油脂:三半乳糖基二酰基甘油(TGDG)的积累和相对量18:3的降低(碳:双膜脂中的脂肪酰基 3,13,18,20 。该方法也适用于以脂质为底物 6 的蛋白质的酶活性测定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号