首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Research on Lane a Compensation Method Based on Multi-Sensor Fusion
【2h】

Research on Lane a Compensation Method Based on Multi-Sensor Fusion

机译:基于多传感器融合的车道补偿方法研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The curvature of the lane output by the vision sensor caused by shadows, changes in lighting and line breaking jumps over in a period of time, which leads to serious problems for unmanned driving control. It is particularly important to predict or compensate the real lane in real-time during sensor jumps. This paper presents a lane compensation method based on multi-sensor fusion of global positioning system (GPS), inertial measurement unit (IMU) and vision sensors. In order to compensate the lane, the cubic polynomial function of the longitudinal distance is selected as the lane model. In this method, a Kalman filter is used to estimate vehicle velocity and yaw angle by GPS and IMU measurements, and a vehicle kinematics model is established to describe vehicle motion. It uses the geometric relationship between vehicle and relative lane motion at the current moment to solve the coefficient of the lane polynomial at the next moment. The simulation and vehicle test results show that the prediction information can compensate for the failure of the vision sensor, and has good real-time, robustness and accuracy.
机译:视觉传感器输出的车道弯曲由阴影,照明变化和断线引起的一段时间内的跳跃,这会导致无人驾驶控制的严重问题。在传感器跳跃期间实时预测或补偿实际车道尤为重要。本文提出了一种基于全球定位系统(GPS),惯性测量单元(IMU)和视觉传感器的多传感器融合的车道补偿方法。为了补偿车道,选择纵向距离的三次多项式函数作为车道模型。在该方法中,卡尔曼滤波器用于通过GPS和IMU测量来估计车速和偏航角,并建立了用于描述车辆运动的车辆运动学模型。它利用当前时刻车辆与相对车道运动之间的几何关系来求解下一时刻车道多项式的系数。仿真和车辆测试结果表明,该预测信息可以弥补视觉传感器的故障,具有良好的实时性,鲁棒性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号