首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Rapid PCR Thermocycling using Microscale Thermal Convection
【2h】

Rapid PCR Thermocycling using Microscale Thermal Convection

机译:使用微型热对流进行快速PCR热循环

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many molecular biology assays depend in some way on the polymerase chain reaction (PCR) to amplify an initially dilute target DNA sample to a detectable concentration level. But the design of conventional PCR thermocycling hardware, predominantly based on massive metal heating blocks whose temperature is regulated by thermoelectric heaters, severely limits the achievable reaction speed1. Considerable electrical power is also required to repeatedly heat and cool the reagent mixture, limiting the ability to deploy these instruments in a portable format.Thermal convection has emerged as a promising alternative thermocycling approach that has the potential to overcome these limitations2-9. Convective flows are an everyday occurrence in a diverse array of settings ranging from the Earth's atmosphere, oceans, and interior, to decorative and colorful lava lamps. Fluid motion is initiated in the same way in each case: a buoyancy driven instability arises when a confined volume of fluid is subjected to a spatial temperature gradient. These same phenomena offer an attractive way to perform PCR thermocycling. By applying a static temperature gradient across an appropriately designed reactor geometry, a continuous circulatory flow can be established that will repeatedly transport PCR reagents through temperature zones associated with the denaturing, annealing, and extension stages of the reaction (Figure 1). Thermocycling can therefore be actuated in a pseudo-isothermal manner by simply holding two opposing surfaces at fixed temperatures, completely eliminating the need to repeatedly heat and cool the instrument.One of the main challenges facing design of convective thermocyclers is the need to precisely control the spatial velocity and temperature distributions within the reactor to ensure that the reagents sequentially occupy the correct temperature zones for a sufficient period of time10,11. Here we describe results of our efforts to probe the full 3-D velocity and temperature distributions in microscale convective thermocyclers12. Unexpectedly, we have discovered a subset of complex flow trajectories that are highly favorable for PCR due to a synergistic combination of (1) continuous exchange among flow paths that provides an enhanced opportunity for reagents to sample the full range of optimal temperature profiles, and (2) increased time spent within the extension temperature zone the rate limiting step of PCR. Extremely rapid DNA amplification times (under 10 min) are achievable in reactors designed to generate these flows.
机译:许多分子生物学测定法在某种程度上取决于聚合酶链反应(PCR),以将最初稀释的目标DNA样品扩增到可检测的浓度水平。但是主要基于大型金属加热块(其温度由热电加热器调节)的常规PCR热循环硬件的设计严重限制了可达到的反应速度 1 。反复加热和冷却试剂混合物也需要大量的电能,从而限制了以便携式形式部署这些仪器的能力。热对流已成为一种有希望的替代热循环方法,有望克服这些限制 2- 9 。对流流动每天都在各种各样的环境中发生,从地球的大气层,海洋和内部环境到装饰性的多彩熔岩灯,应有尽有。在每种情况下,都以相同的方式启动流体运动:当有限体积的流体经受空间温度梯度时,会产生由浮力驱动的不稳定性。这些相同现象为执行PCR热循环提供了一种有吸引力的方法。通过在适当设计的反应器几何结构上施加静态温度梯度,可以建立连续的循环流,该循环流将通过与反应的变性,退火和延伸阶段相关的温度区域重复运输PCR试剂(图1)。因此,只需简单地将两个相对的表面保持在固定温度下,就可以以伪等温方式启动热循环,从而完全消除了重复加热和冷却仪器的需求。对流热循环仪设计面临的主要挑战之一是需要精确控制温度。反应器内的空间速度和温度分布,以确保试剂在足够长的时间内依次占据正确的温度区 10,11 。在这里,我们描述了我们在微尺度对流热循环仪 12 中探测完整的3-D速度和温度分布的结果。出乎意料的是,由于(1)流路之间的连续交换的协同组合,我们发现了一组复杂的流动轨迹,它们对PCR非常有利,这为试剂采样整个最佳温度曲线提供了更大的机会,并且( 2)在延伸温度区域花费的时间增加了PCR的速率限制步骤。在旨在产生这些流的反应器中,可以实现极快的DNA扩增时间(不到10分钟)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号