首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Attaching Biological Probes to Silica Optical Biosensors Using Silane Coupling Agents
【2h】

Attaching Biological Probes to Silica Optical Biosensors Using Silane Coupling Agents

机译:使用硅烷偶联剂将生物探针连接到二氧化硅光学生物传感器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In order to interface with biological environments, biosensor platforms, such as the popular Biacore system (based on the Surface Plasmon Resonance (SPR) technique), make use of various surface modification techniques, that can, for example, prevent surface fouling, tune the hydrophobicity / hydrophilicity of the surface, adapt to a variety of electronic environments, and most frequently, induce specificity towards a target of interest.1-5 These techniques extend the functionality of otherwise highly sensitive biosensors to real-world applications in complex environments, such as blood, urine, and wastewater analysis.2,6-7 While commercial biosensing platforms, such as Biacore, have well-understood, standard techniques for performing such surface modifications, these techniques have not been translated in a standardized fashion to other label-free biosensing platforms, such as Whispering Gallery Mode (WGM) optical resonators.8-9WGM optical resonators represent a promising technology for performing label-free detection of a wide variety of species at ultra-low concentrations.6,10-12 The high sensitivity of these platforms is a result of their unique geometric optics: WGM optical resonators confine circulating light at specific, integral resonance frequencies.13 Like the SPR platforms, the optical field is not totally confined to the sensor device, but evanesces; this "evanescent tail" can then interact with species in the surrounding environment. This interaction causes the effective refractive index of the optical field to change, resulting in a slight, but detectable, shift in the resonance frequency of the device. Because the optical field circulates, it can interact many times with the environment, resulting in an inherent amplification of the signal, and very high sensitivities to minor changes in the environment.2,14-15To perform targeted detection in complex environments, these platforms must be paired with a probe molecule (usually one half of a binding pair, e.g. antibodies / antigens) through surface modification.2 Although WGM optical resonators can be fabricated in several geometries from a variety of material systems, the silica microsphere is the most common. These microspheres are generally fabricated on the end of an optical fiber, which provides a "stem" by which the microspheres can be handled during functionalization and detection experiments. Silica surface chemistries may be applied to attach probe molecules to their surfaces; however, traditional techniques generated for planar substrates are often not adequate for these three-dimensional structures, as any changes to the surface of the microspheres (dust, contamination, surface defects, and uneven coatings) can have severe, negative consequences on their detection capabilities. Here, we demonstrate a facile approach for the surface functionalization of silica microsphere WGM optical resonators using silane coupling agents to bridge the inorganic surface and the biological environment, by attaching biotin to the silica surface.8,16 Although we use silica microsphere WGM resonators as the sensor system in this report, the protocols are general and can be used to functionalize the surface of any silica device with biotin.
机译:为了与生物环境进行交互,诸如流行的Biacore系统(基于表面等离子共振(SPR)技术)之类的生物传感器平台利用了各种表面修饰技术,例如,可以防止表面结垢,对表面进行调节。表面的疏水性/亲水性,适应各种电子环境,并且最常见的是诱导对感兴趣目标的特异性。 1-5 这些技术将原本高度敏感的生物传感器的功能扩展到了实际 2,6-7 在复杂的环境中具有广泛的应用前景。 2,6-7 尽管商用生物传感平台(例如Biacore)具有进行此类表面修饰的众所周知的标准技术,这些技术尚未以标准化的方式转换为其他无标签生物传感平台,例如耳语画廊模式(WGM)光谐振器。 8-9 WGM光谐振器提供了一种有前途的技术,可用于以超低浓度对多种物种进行无标签检测。 6,10-12 这些平台的高灵敏度是其独特的几何光学原理的结果:WGM光学谐振器将循环光限制在特定的整体谐振频率。 13 像SPR平台一样,光场并不完全局限于传感器设备,而是可以逃逸的。然后,这种“渐逝的尾巴”可以与周围环境中的物种相互作用。这种相互作用导致光场的有效折射率发生变化,从而导致设备谐振频率发生轻微但可检测的偏移。由于光场是循环的,因此它可以与环境相互作用多次,从而导致信号固有的放大,并且对环境中的微小变化具有很高的敏感性。 2,14-15 在复杂环境中进行检测,这些平台必须通过表面修饰与探针分子(通常是结合对的一半,例如抗体/抗原)配对。 2 尽管WGM光学谐振器可以制造成几种几何形状从各种材料系统来看,二氧化硅微球是最常见的。这些微球通常是在光纤的一端制造的,它提供了一个“茎”,在功能化和检测实验过程中,可以通过该“茎”来处理微球。可以使用二氧化硅表面化学方法将探针分子附着到其表面;但是,为平面基板生成的传统技术通常不适用于这些三维结构,因为微球表面的任何变化(灰尘,污染,表面缺陷和不均匀的涂层)都可能对其检测能力造成严重的负面影响。在这里,我们展示了一种通过硅烷偶联剂将生物素附着到二氧化硅表面上,从而使用硅烷偶联剂桥接二氧化硅微球WGM光谐振器的表面功能化的简便方法。 8,16 尽管在本报告中,我们将二氧化硅微球WGM谐振器用作传感器系统,该协议是通用的,可用于使具有生物素的任何二氧化硅设备的表面功能化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号