首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Indoor Localization Based on Weighted Surfacing from Crowdsourced Samples
【2h】

Indoor Localization Based on Weighted Surfacing from Crowdsourced Samples

机译:基于众包样本加权曲面的室内定位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fingerprinting-based indoor localization suffers from its time-consuming and labor-intensive site survey. As a promising solution, sample crowdsourcing has been recently promoted to exploit casually collected samples for building offline fingerprint database. However, crowdsourced samples may be annotated with erroneous locations, which raises a serious question about whether they are reliable for database construction. In this paper, we propose a cross-domain cluster intersection algorithm to weight each sample reliability. We then select those samples with higher weight to construct radio propagation surfaces by fitting polynomial functions. Furthermore, we employ an entropy-like measure to weight constructed surfaces for quantifying their different subarea consistencies and location discriminations in online positioning. Field measurements and experiments show that the proposed scheme can achieve high localization accuracy by well dealing with the sample annotation error and nonuniform density challenges.
机译:基于指纹的室内本地化受制于其耗时且劳动强度大的现场调查。作为一种有前途的解决方案,最近促进了样本众包,以利用随便收集的样本来构建脱机指纹数据库。但是,众包样本可能带有错误的位置注释,这引发了一个严重的问题,即它们对于数据库构建是否可靠。在本文中,我们提出了一种跨域聚类相交算法来加权每个样本的可靠性。然后,我们通过拟合多项式函数选择具有较高权重的那些样本以构造无线电传播曲面。此外,我们采用类似熵的方法对构造的表面加权,以量化其不同的分区一致性和在线定位中的位置判别。现场测量和实验表明,该方案通过很好地处理样本标注错误和非均匀密度挑战,可以实现较高的定位精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号