首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Sensor Fusion for Recognition of Activities of Daily Living
【2h】

Sensor Fusion for Recognition of Activities of Daily Living

机译:传感器融合识别日常生活活动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Activity of daily living (ADL) is a significant predictor of the independence and functional capabilities of an individual. Measurements of ADLs help to indicate one’s health status and capabilities of quality living. Recently, the most common ways to capture ADL data are far from automation, including a costly 24/7 observation by a designated caregiver, self-reporting by the user laboriously, or filling out a written ADL survey. Fortunately, ubiquitous sensors exist in our surroundings and on electronic devices in the Internet of Things (IoT) era. We proposed the ADL Recognition System that utilizes the sensor data from a single point of contact, such as smartphones, and conducts time-series sensor fusion processing. Raw data is collected from the ADL Recorder App constantly running on a user’s smartphone with multiple embedded sensors, including the microphone, Wi-Fi scan module, heading orientation of the device, light proximity, step detector, accelerometer, gyroscope, magnetometer, etc. Key technologies in this research cover audio processing, Wi-Fi indoor positioning, proximity sensing localization, and time-series sensor data fusion. By merging the information of multiple sensors, with a time-series error correction technique, the ADL Recognition System is able to accurately profile a person’s ADLs and discover his life patterns. This paper is particularly concerned with the care for the older adults who live independently.
机译:日常生活活动(ADL)是个人独立性和功能能力的重要预测指标。对ADL的测量有助于表明一个人的健康状况和优质生活的能力。最近,捕获ADL数据的最常用方法远非自动化,包括由指定的看护者进行的昂贵的24/7观察,用户费力地自我报告或填写书面ADL调查。幸运的是,在物联网(IoT)时代,无处不在的传感器存在于我们的周围环境和电子设备中。我们提出了ADL识别系统,该系统利用来自单点接触的传感器数据(例如智能手机),并进行时间序列的传感器融合处理。从ADL Recorder应用程序收集原始数据,该应用程序始终在具有多个嵌入式传感器的用户智能手机上运行,​​这些传感器包括麦克风,Wi-Fi扫描模块,设备的航向,光邻近度,步进检测器,加速度计,陀螺仪,磁力计等。该研究的关键技术包括音频处理,Wi-Fi室内定位,接近感应定位和时间序列传感器数据融合。通过使用时序错误校正技术合并多个传感器的信息,ADL识别系统能够准确地描述一个人的ADL并发现他的生活模式。本文特别关注独立生活的老年人的护理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号