首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots
【2h】

SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots

机译:SWARMs本体论:水下机器人合作的通用信息模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In order to facilitate cooperation between underwater robots, it is a must for robots to exchange information with unambiguous meaning. However, heterogeneity, existing in information pertaining to different robots, is a major obstruction. Therefore, this paper presents a networked ontology, named the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) ontology, to address information heterogeneity and enable robots to have the same understanding of exchanged information. The SWARMs ontology uses a core ontology to interrelate a set of domain-specific ontologies, including the mission and planning, the robotic vehicle, the communication and networking, and the environment recognition and sensing ontology. In addition, the SWARMs ontology utilizes ontology constructs defined in the PR-OWL ontology to annotate context uncertainty based on the Multi-Entity Bayesian Network (MEBN) theory. Thus, the SWARMs ontology can provide both a formal specification for information that is necessarily exchanged between robots and a command and control entity, and also support for uncertainty reasoning. A scenario on chemical pollution monitoring is described and used to showcase how the SWARMs ontology can be instantiated, be extended, represent context uncertainty, and support uncertainty reasoning.
机译:为了促进水下机器人之间的协作,机器人必须交换具有明确含义的信息。然而,存在于与不同机器人有关的信息中的异质性是主要障碍。因此,本文提出了一种名为“协作网格中的智能和联网水下机器人”(SWARM)本体的网络本体,以解决信息异质性并使机器人对交换的信息具有相同的理解。 SWARM本体使用核心本体将一组特定领域的本体(包括任务和计划,机器人车辆,通信和联网以及环境识别和感知本体)相互关联。此外,SWARMs本体基于多实体贝叶斯网络(MEBN)理论,利用PR-OWL本体中定义的本体构造来注释上下文不确定性。因此,SWARM本体既可以为在机器人与命令和控制实体之间交换的信息提供形式上的规范,也可以为不确定性推理提供支持。描述了有关化学污染监控的场景,并将其用于展示如何实例化,扩展SWARM本体,表示上下文不确定性并支持不确定性推理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号