首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >An Automatic Car Counting System Using OverFeat Framework
【2h】

An Automatic Car Counting System Using OverFeat Framework

机译:使用OverFeat框架的自动计车系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Automatic car counting is an important component in the automated traffic system. Car counting is very important to understand the traffic load and optimize the traffic signals. In this paper, we implemented the Gaussian Background Subtraction Method and OverFeat Framework to count cars. OverFeat Framework is a combination of Convolution Neural Network (CNN) and one machine learning classifier (like Support Vector Machines (SVM) or Logistic Regression). With this study, we showed another possible application area for the OverFeat Framework. The advantages and shortcomings of the Background Subtraction Method and OverFeat Framework were analyzed using six individual traffic videos with different perspectives, such as camera angles, weather conditions and time of the day. In addition, we compared the two algorithms above with manual counting and a commercial software called Placemeter. The OverFeat Framework showed significant potential in the field of car counting with the average accuracy of 96.55% in our experiment.
机译:自动汽车计数是自动交通系统中的重要组成部分。车辆计数对于了解交通负荷和优化交通信号非常重要。在本文中,我们实现了高斯背景减法和OverFeat框架来对汽车进行计数。 OverFeat Framework是卷积神经网络(CNN)和一个机器学习分类器(例如支持向量机(SVM)或逻辑回归)的组合。通过这项研究,我们展示了OverFeat框架的另一个可能的应用领域。使用六个视角各异的交通视频(例如摄像机角度,天气状况和一天中的时间)分析了背景减去方法和OverFeat框架的优缺点。此外,我们将上述两种算法与手动计数和名为Placemeter的商业软件进行了比较。 OverFeat框架在汽车计数领域显示出巨大潜力,在我们的实验中,其平均准确度为96.55%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号