首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Deep Source Localization with Magnetoencephalography Based on Sensor Array Decomposition and Beamforming
【2h】

Deep Source Localization with Magnetoencephalography Based on Sensor Array Decomposition and Beamforming

机译:基于传感器阵列分解和波束形成的脑磁图深源定位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, the source localization technique of magnetoencephalography (MEG) has played a prominent role in cognitive neuroscience and in the diagnosis and treatment of neurological and psychological disorders. However, locating deep brain activities such as in the mesial temporal structures, especially in preoperative evaluation of epilepsy patients, may be more challenging. In this work we have proposed a modified beamforming approach for finding deep sources. First, an iterative spatiotemporal signal decomposition was employed for reconstructing the sensor arrays, which could characterize the intrinsic discriminant features for interpreting sensor signals. Next, a sensor covariance matrix was estimated under the new reconstructed space. Then, a well-known vector beamforming approach, which was a linearly constraint minimum variance (LCMV) approach, was applied to compute the solution for the inverse problem. It can be shown that the proposed source localization approach can give better localization accuracy than two other commonly-used beamforming methods (LCMV, MUSIC) in simulated MEG measurements generated with deep sources. Further, we applied the proposed approach to real MEG data recorded from ten patients with medically-refractory mesial temporal lobe epilepsy (mTLE) for finding epileptogenic zone(s), and there was a good agreement between those findings by the proposed approach and the clinical comprehensive results.
机译:近年来,脑磁图(MEG)的源定位技术在认知神经科学以及神经和心理疾病的诊断和治疗中发挥了重要作用。但是,定位大脑的深部活动(例如在颞中部结构中),尤其是在癫痫患者的术前评估中,可能更具挑战性。在这项工作中,我们提出了一种改进的波束成形方法来寻找深层信号源。首先,采用迭代时空信号分解来重建传感器阵列,这可以表征用于解释传感器信号的固有判别特征。接下来,在新的重构空间下估计传感器协方差矩阵。然后,采用了一种众所周知的矢量波束成形方法(一种线性约束最小方差(LCMV)方法)来计算反问题的解。可以证明,在用深源生成的模拟MEG测量中,所提出的源定位方法比其他两种常用的波束形成方法(LCMV,MUSIC)可以提供更好的定位精度。此外,我们将拟议的方法应用于从十名患有难治性内侧颞叶癫痫(mTLE)的患者中记录的真实MEG数据,以找到致癫痫区,并且该方法与临床发现之间存在良好的一致性综合结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号