首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Detecting Unknown Artificial Urban Surface Materials Based on Spectral Dissimilarity Analysis
【2h】

Detecting Unknown Artificial Urban Surface Materials Based on Spectral Dissimilarity Analysis

机译:基于光谱相似度分析的未知人工城市表面材料检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High resolution imaging spectroscopy data have been recognised as a valuable data resource for augmenting detailed material inventories that serve as input for various urban applications. Image-specific urban spectral libraries are successfully used in urban imaging spectroscopy studies. However, the regional- and sensor-specific transferability of such libraries is limited due to the wide range of different surface materials. With the developed methodology, incomplete urban spectral libraries can be utilised by assuming that unknown surface material spectra are dissimilar to the known spectra in a basic spectral library (BSL). The similarity measure SID-SCA (Spectral Information Divergence-Spectral Correlation Angle) is applied to detect image-specific unknown urban surfaces while avoiding spectral mixtures. These detected unknown materials are categorised into distinct and identifiable material classes based on their spectral and spatial metrics. Experimental results demonstrate a successful redetection of material classes that had been previously erased in order to simulate an incomplete BSL. Additionally, completely new materials e.g., solar panels were identified in the data. It is further shown that the level of incompleteness of the BSL and the defined dissimilarity threshold are decisive for the detection of unknown material classes and the degree of spectral intra-class variability. A detailed accuracy assessment of the pre-classification results, aiming to separate natural and artificial materials, demonstrates spectral confusions between spectrally similar materials utilizing SID-SCA. However, most spectral confusions occur between natural or artificial materials which are not affecting the overall aim. The dissimilarity analysis overcomes the limitations of working with incomplete urban spectral libraries and enables the generation of image-specific training databases.
机译:高分辨率成像光谱数据已被认为是宝贵的数据资源,可用于增加详细的材料清单,这些清单可作为各种城市应用的输入。特定于图像的城市光谱库已成功用于城市成像光谱研究。但是,由于不同表面材料的广泛范围,此类库的区域和传感器特定的可传递性受到限制。使用已开发的方法,可以通过假设未知的表面物质光谱与基本光谱库(BSL)中的已知光谱不同来利用不完整的城市光谱库。相似度度量SID-SCA(光谱信息发散度-光谱相关角)用于检测特定于图像的未知城市表面,同时避免光谱混合。这些检测到的未知材料会根据其光谱和空间指标分为不同且可识别的材料类别。实验结果表明,成功地重新检测了先前已删除的材料类别,以模拟不完整的BSL。此外,数据中还识别出了全新的材料,例如太阳能电池板。进一步表明,BSL的不完全水平和定义的相异性阈值对于检测未知材料类别和光谱内部类别变异性的程度具有决定性作用。对预分类结果进行的详细准确性评估(旨在分离天然材料和人工材料)证明了利用SID-SCA的光谱相似材料之间的光谱混淆。但是,大多数光谱混淆发生在天然或人造材料之间,并不影响总体目标。差异分析克服了使用不完整的城市光谱库的局限性,并能够生成特定于图像的训练数据库。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号