首页> 美国卫生研究院文献>Journal of Visualized Experiments : JoVE >Fabrication of Micropatterned Hydrogels for Neural Culture Systems using Dynamic Mask Projection Photolithography
【2h】

Fabrication of Micropatterned Hydrogels for Neural Culture Systems using Dynamic Mask Projection Photolithography

机译:动态掩模投影光刻技术制备用于神经培养系统的微图案水凝胶

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Increasingly, patterned cell culture environments are becoming a relevant technique to study cellular characteristics, and many researchers believe in the need for 3D environments to represent in vitro experiments which better mimic in vivo qualities 1-3. Studies in fields such as cancer research 4, neural engineering 5, cardiac physiology 6, and cell-matrix interaction7,8have shown cell behavior differs substantially between traditional monolayer cultures and 3D constructs.Hydrogels are used as 3D environments because of their variety, versatility and ability to tailor molecular composition through functionalization 9-12. Numerous techniques exist for creation of constructs as cell-supportive matrices, including electrospinning13, elastomer stamps14, inkjet printing15, additive photopatterning16, static photomask projection-lithography17, and dynamic mask microstereolithography18. Unfortunately, these methods involve multiple production steps and/or equipment not readily adaptable to conventional cell and tissue culture methods. The technique employed in this protocol adapts the latter two methods, using a digital micromirror device (DMD) to create dynamic photomasks for crosslinking geometrically specific poly-(ethylene glycol) (PEG) hydrogels, induced through UV initiated free radical polymerization. The resulting "2.5D" structures provide a constrained 3D environment for neural growth. We employ a dual-hydrogel approach, where PEG serves as a cell-restrictive region supplying structure to an otherwise shapeless but cell-permissive self-assembling gel made from either Puramatrix or agarose. The process is a quick simple one step fabrication which is highly reproducible and easily adapted for use with conventional cell culture methods and substrates.Whole tissue explants, such as embryonic dorsal root ganglia (DRG), can be incorporated into the dual hydrogel constructs for experimental assays such as neurite outgrowth. Additionally, dissociated cells can be encapsulated in the photocrosslinkable or self polymerizing hydrogel, or selectively adhered to the permeable support membrane using cell-restrictive photopatterning. Using the DMD, we created hydrogel constructs up to ~1mm thick, but thin film (<200 μm) PEG structures were limited by oxygen quenching of the free radical polymerization reaction. We subsequently developed a technique utilizing a layer of oil above the polymerization liquid which allowed thin PEG structure polymerization.In this protocol, we describe the expeditious creation of 3D hydrogel systems for production of microfabricated neural cell and tissue cultures. The dual hydrogel constructs demonstrated herein represent versatile in vitro models that may prove useful for studies in neuroscience involving cell survival, migration, and/or neurite growth and guidance. Moreover, as the protocol can work for many types of hydrogels and cells, the potential applications are both varied and vast.
机译:图案化的细胞培养环境越来越成为研究细胞特征的一种相关技术,许多研究人员认为需要3D环境来代表能够更好地模仿体内质量 1-3 的体外实验。癌症研究 4 ,神经工程学 5 ,心脏生理学 6 和细胞-基质相互作用 7,8 < / sup>已显示出传统的单层培养物和3D构建体之间的细胞行为存在很大差异。水凝胶由于其多样性,多功能性和通过功能化 9-12 来定制分子组成的能力而被用作3D环境。存在多种用于创建构建体作为细胞支持基质的技术,包括静电纺丝 13 ,弹性体印章 14 ,喷墨印刷 15 ,加成光图案 > 16 ,静态光掩模投影光刻 17 和动态掩模微立体光刻 18 。不幸的是,这些方法涉及多个生产步骤和/或设备,这些步骤和/或设备不易适应常规细胞和组织培养方法。该协议中采用的技术适用于后两种方法,使用数字微镜设备(DMD)创建动态光掩模,以使通过UV引发的自由基聚合反应诱导的几何学上特定的聚乙二醇(PEG)水凝胶交联。最终的“ 2.5D”结构为神经生长提供了受约束的3D环境。我们采用双水凝胶方法,其中PEG充当细胞限制性区域的供应结构,而该结构是由Puramatrix或琼脂糖制成的无形状但具有细胞允许性的自组装凝胶。该方法是一种快速,简单的一步制备方法,具有很高的可重复性,并且易于与常规细胞培养方法和底物一起使用。可以将整个组织外植体(例如胚胎背根神经节(DRG))掺入双水凝胶构建物中进行实验分析,例如神经突增生。另外,可将解离的细胞封装在可光交联或自聚合的水凝胶中,或使用细胞限制性光图案法将其选择性粘附至可渗透支持膜。使用DMD,我们创建了约1mm厚的水凝胶结构,但薄膜(<200μm)PEG结构受到自由基聚合反应的氧猝灭作用的限制。随后,我们开发了一种利用聚合液体上方的油层实现薄PEG结构聚合的技术。在此协议中,我们描述了快速创建3D水凝胶系统以生产微细神经细胞和组织培养物的技术。本文证明的双水凝胶构建体代表了多种体外模型,这些模型可能证明可用于涉及细胞存活,迁移和/或神经突生长和引导的神经科学研究。此外,由于该协议可适用于多种类型的水凝胶和细胞,因此潜在的应用领域千差万别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号