首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Universal poroelastic mechanism for hydraulic signals in biomimetic and natural branches
【2h】

Universal poroelastic mechanism for hydraulic signals in biomimetic and natural branches

机译:仿生和天然分支中水力信号的通用多孔弹性机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Plants constantly undergo external mechanical loads such as wind or touch and respond to these stimuli by acclimating their growth processes. A fascinating feature of this mechanical-induced growth response is that it can occur rapidly and at long distance from the initial site of stimulation, suggesting the existence of a fast signal that propagates across the whole plant. The nature and origin of the signal is still not understood, but it has been recently suggested that it could be purely mechanical and originate from the coupling between the local deformation of the tissues (bending) and the water pressure in the plant vascular system. Here, we address the physical origin of this hydromechanical coupling using a biomimetic strategy. We designed soft artificial branches perforated with longitudinal liquid-filled channels that mimic the basic features of natural stems and branches. In response to bending, a strong overpressure is generated in the channels that varies quadratically with the bending curvature. A model based on a mechanism analogous to the ovalization of hollow tubes enables us to predict quantitatively this nonlinear poroelastic response and identify the key physical parameters that control the generation of the pressure pulse. Further experiments conducted on natural tree branches reveal the same phenomenology. Once rescaled by the model prediction, both the biomimetic and natural branches fall on the same master curve, enlightening the universality of our poroelastic mechanism for the generation of hydraulic signals in plants.
机译:植物不断遭受外部机械负荷(例如风或触摸),并通过适应其生长过程来对这些刺激做出反应。机械诱导的生长反应的一个引人入胜的特征是,它可以快速发生,并且与刺激的初始位置相距很远,这表明存在遍布整个植物的快速信号。信号的性质和起源仍然不明,但是最近有人提出它可能是纯机械的,并且起源于组织的局部变形(弯曲)和植物血管系统中水压之间的耦合。在这里,我们使用仿生策略解决了这种水力耦合的物理原因。我们设计了柔软的人造树枝,其上开有纵向液体填充通道,这些通道模仿了自然茎和树枝的基本特征。响应于弯曲,在通道中产生强烈的过压,其随弯曲曲率呈二次方变化。基于类似于中空管椭圆化机制的模型,我们可以定量预测这种非线性多孔弹性响应,并确定控制压力脉冲生成的关键物理参数。在天然树枝上进行的进一步实验揭示了相同的现象。一旦通过模型预测重新定标,仿生分支和自然分支都落在同一主曲线上,这启发了我们在植物中生成水力信号的多孔弹性机制的普遍性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号