首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite
【2h】

Multiple stiffening effects of nanoscale knobs on human red blood cells infected with Plasmodium falciparum malaria parasite

机译:纳米旋钮对恶性疟原虫疟原虫感染人红细胞的多重强化作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

During its asexual development within the red blood cell (RBC), Plasmodium falciparum (Pf), the most virulent human malaria parasite, exports proteins that modify the host RBC membrane. The attendant increase in cell stiffness and cytoadherence leads to sequestration of infected RBCs in microvasculature, which enables the parasite to evade the spleen, and leads to organ dysfunction in severe cases of malaria. Despite progress in understanding malaria pathogenesis, the molecular mechanisms responsible for the dramatic loss of deformability of Pf-infected RBCs have remained elusive. By recourse to a coarse-grained (CG) model that captures the molecular structures of Pf-infected RBC membrane, here we show that nanoscale surface protrusions, known as “knobs,” introduce multiple stiffening mechanisms through composite strengthening, strain hardening, and knob density-dependent vertical coupling. On one hand, the knobs act as structural strengtheners for the spectrin network; on the other, the presence of knobs results in strain inhomogeneity in the spectrin network with elevated shear strain in the knob-free regions, which, given its strain-hardening property, effectively stiffens the network. From the trophozoite to the schizont stage that ensues within 24–48 h of parasite invasion into the RBC, the rise in the knob density results in the increased number of vertical constraints between the spectrin network and the lipid bilayer, which further stiffens the membrane. The shear moduli of Pf-infected RBCs predicted by the CG model at different stages of parasite maturation are in agreement with experimental results. In addition to providing a fundamental understanding of the stiffening mechanisms of Pf-infected RBCs, our simulation results suggest potential targets for antimalarial therapies.
机译:在红细胞(RBC)中无性繁殖期间,恶性疟原虫(Pf)是最强毒的人类疟疾寄生虫,可输出修饰宿主RBC膜的蛋白质。随之而来的细胞僵硬度和细胞粘附性的增加导致在微脉管系统中隔离被感染的红细胞,这使寄生虫能够逃避脾脏,并在严重的疟疾病例中导致器官功能障碍。尽管在了解疟疾发病机理方面取得了进展,但造成Pf感染的RBC严重丧失变形能力的分子机制仍然难以捉摸。通过利用捕获Pf感染的RBC膜的分子结构的粗粒(CG)模型,我们在这里显示了纳米级表面突起(称为“旋钮”)通过复合增强,应变硬化和旋钮引入了多种加劲机制。密度相关的垂直耦合。一方面,旋钮起到了血影蛋白网络结构增强的作用。另一方面,球形突起的存在会导致血影蛋白网络中的应变不均匀,而无球形突起区域中的剪切应变升高,考虑到其应变硬化特性,其有效地使网络硬化。从滋养体到裂殖体阶段,在寄生虫侵入RBC的24-48小时内,结节密度的增加导致血影蛋白网络和脂质双层之间的垂直约束数量增加,从而进一步使膜变硬。 CG模型预测的Pf感染RBC的剪切模量在寄生虫成熟的不同阶段与实验结果一致。除了提供对Pf感染的RBC强化机制的基本了解之外,我们的模拟结果还提出了抗疟疾治疗的潜在目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号