首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >PNAS Plus: Unconstrained muscle-tendon workloops indicate resonance tuning as a mechanism for elastic limb behavior during terrestrial locomotion
【2h】

PNAS Plus: Unconstrained muscle-tendon workloops indicate resonance tuning as a mechanism for elastic limb behavior during terrestrial locomotion

机译:PNAS Plus:不受约束的肌腱工作环表明共振调谐是陆地运动过程中弹性肢体行为的一种机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

In terrestrial locomotion, there is a missing link between observed spring-like limb mechanics and the physiological systems driving their emergence. Previous modeling and experimental studies of bouncing gait (e.g., walking, running, hopping) identified muscle-tendon interactions that cycle large amounts of energy in series tendon as a source of elastic limb behavior. The neural, biomechanical, and environmental origins of these tuned mechanics, however, have remained elusive. To examine the dynamic interplay between these factors, we developed an experimental platform comprised of a feedback-controlled servo-motor coupled to a biological muscle-tendon. Our novel motor controller mimicked in vivo inertial/gravitational loading experienced by muscles during terrestrial locomotion, and rhythmic patterns of muscle activation were applied via stimulation of intact nerve. This approach was based on classical workloop studies, but avoided predetermined patterns of muscle strain and activation—constraints not imposed during real-world locomotion. Our unconstrained approach to position control allowed observation of emergent muscle-tendon mechanics resulting from dynamic interaction of neural control, active muscle, and system material/inertial properties. This study demonstrated that, despite the complex nonlinear nature of musculotendon systems, cyclic muscle contractions at the passive natural frequency of the underlying biomechanical system yielded maximal forces and fractions of mechanical work recovered from previously stored elastic energy in series-compliant tissues. By matching movement frequency to the natural frequency of the passive biomechanical system (i.e., resonance tuning), muscle-tendon interactions resulting in spring-like behavior emerged naturally, without closed-loop neural control. This conceptual framework may explain the basis for elastic limb behavior during terrestrial locomotion.
机译:在陆地运动中,观察到的类似弹簧的肢体力学与驱动其出现的生理系统之间缺少联系。先前对步态弹跳(例如,步行,跑步,跳跃)的建模和实验研究确定了肌肉-肌腱相互作用,该运动循环了一系列腱中的大量能量,这是弹性肢体行为的来源。但是,这些调整后的力学的神经,生物力学和环境起源仍然难以捉摸。为了检查这些因素之间的动态相互作用,我们开发了一个实验平台,该平台由与生物肌腱耦合的反馈控制伺服电机组成。我们新颖的运动控制器模仿了地面运动中肌肉所经历的体内惯性/重力负荷,并且通过刺激完整神经来应用肌肉激活的节律模式。这种方法基于经典的工作循环研究,但是避免了预先确定的肌肉劳损和激活模式-在现实世界的运动中没有施加约束。我们不受约束的位置控制方法可以观察到由于神经控制,活动肌肉和系统材料/惯性特性之间的动态相互作用而产生的新兴肌腱力学。这项研究表明,尽管肌肉腱系统具有复杂的非线性性质,但在基础生物力学系统的被动固有频率处的循环肌肉收缩仍能产生最大的力和从先前储存在顺应性组织中的弹性能中回收的一部分机械功。通过使运动频率与被动生物力学系统的固有频率相匹配(即共振调谐),自然产生了肌腱相互作用,从而产生了类似弹簧的行为,而没有闭环神经控制。这个概念框架可以解释在地面运动过程中弹性肢体行为的基础。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号