首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Modeling gating charge and voltage changes in response to charge separation in membrane proteins
【2h】

Modeling gating charge and voltage changes in response to charge separation in membrane proteins

机译:模拟门控电荷和电压变化以响应膜蛋白中的电荷分离

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Measurements of voltage changes in response to charge separation within membrane proteins can offer fundamental information on mechanisms of charge transport and displacement processes. A recent example is provided by studies of cytochrome c oxidase. However, the interpretation of the observed voltage changes in terms of the number of charge equivalents and transfer distances is far from being trivial or unique. Using continuum approaches to describe the voltage generation may involve significant uncertainties and reliable microscopic simulations are not yet available. Here, we attempt to solve this problem by using a coarse-grained model of membrane proteins, which includes an explicit description of the membrane, the electrolytes, and the electrodes. The model evaluates the gating charges and the electrode potentials (c.f. measured voltage) upon charge transfer within the protein. The accuracy of the model is evaluated by a comparison of measured voltage changes associated with electron and proton transfer in bacterial photosynthetic reaction centers to those calculated using our coarse-grained model. The calculations reproduce the experimental observations and thus indicate that the method is of general use. Interestingly, it is found that charge-separation processes with different spatial directions (but the same distance perpendicular to the membrane) can give similar observed voltage changes, which indicates that caution should be exercised when using simplified interpretation of the relationship between charge displacement and voltage changes.
机译:响应于膜蛋白内电荷分离的电压变化的测量可以提供有关电荷传输和置换过程机理的基本信息。细胞色素C氧化酶的研究提供了最近的例子。然而,根据电荷当量和转移距离对观察到的电压变化的解释并非无关紧要或唯一的。使用连续方法来描述电压的产生可能涉及重大的不确定性,并且尚无可靠的微观模拟。在这里,我们试图通过使用膜蛋白的粗粒度模型来解决此问题,该模型包括对膜,电解质和电极的明确描述。该模型评估蛋白质中电荷转移时的门控电荷和电极电势(参考测得的电压)。通过将细菌光合作用反应中心中与电子和质子转移相关的测量电压变化与使用我们的粗颗粒模型计算出的电压变化进行比较,可以评估模型的准确性。计算结果重现了实验观察结果,因此表明该方法是通用的。有趣的是,发现具有不同空间方向(但垂直于膜的距离相同)的电荷分离过程可产生相似的观察到的电压变化,这表明当使用简化的电荷位移与电压之间关系的解释时应谨慎行事。变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号