首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >A Microscopic Capacitor Model of Voltage Coupling in Membrane Proteins: Gating Charge Fluctuations in Ci-VSD
【24h】

A Microscopic Capacitor Model of Voltage Coupling in Membrane Proteins: Gating Charge Fluctuations in Ci-VSD

机译:膜蛋白中电压耦合的微观电容器模型:Ci-VSD中的门控电荷波动

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The voltage sensitivity of membrane proteins is reflected in the response of the voltage sensing domains (VSDs) to the changes in membrane potential. This response is implicated in the displacement of positively charged residues, associated with the conformational changes of VSDs. The displaced charges generate nonlinear (i.e., voltage-dependent) capacitance current called the gating current (and its corresponding gating charge), which is a key experimental quantity that characterizes voltage activation in VSMP. However, the relevant theoretical/computational approaches, aimed to correlate the structural information on VSMP to electrophysiological measurements, have been rather limited, posing a broad challenge in computer simulations of VSMP. Concomitant with the development of our coarse-graining (CG) model of voltage coupling, we apply our theoretical framework for the treatments of voltage effects in membrane proteins to modeling the VSMP activation, taking the VSDs (Ci-VSD) derived from the Ciona intestinalis voltage sensitive phosphatase (Ci-VSP) as a model system. Our CG model reproduces the observed gating charge of Ci-VSD activation in several different perspectives. In particular, a new closed-form expression of the gating charge is evaluated in both nonequilibrium and equilibrium ways, while considering the fluctuation dissipation relation that connects a nonequilibrium measurement of the gating charge to an equilibrium measurement of charge fluctuations (i.e., the voltage-independent linear component of membrane capacitance). In turn, the expression uncovers a novel link that connects an equilibrium measurement of the voltage-independent linear capacitance to a nonequilibrium measurement of the voltage-dependent nonlinear capacitance (whose integral over voltage is equal to the gating charge). In addition, our CG model yields capacitor-like voltage dependent free energy parabolas, resulting in the free energy difference and the free energy barrier for the Ci-VSD activation at "zero" (depolarization) membrane potential. Significantly, the resultant voltage dependent energetics enables a direct evaluation,of capacitance voltage relationship (C-V curve) as well as charge voltage relationship (Q-V curve) that is in a good agreement with the observed measurement of Ci-VSD voltage activation. Importantly, an extension of our kinetic/thermodynamic model of voltage dependent activation in VSMP allows for novel derivations of voltage-dependent rate constants, whose parameters are expressed by the intrinsic properties of VSMP. These novel closed-form expressions offer a physicochemical foundation for the semiempirical Eyring-type voltage dependent rate equations that have been the cornerstone for the phenomenological (kinetic) descriptions of gating and membrane currents in the mechanistic study of ion channels and transporters. Our extended theoretical framework developed in the present study has potential implications on the roles played by,gating charge fluctuations for the spike generations in nerve cells within the framework of the Hodgkin-Huxley-type model.
机译:膜蛋白的电压敏感性反映在电压感测域(VSD)对膜电位变化的响应中。该反应与带正电荷的残基的置换有关,与VSD的构象变化有关。置换的电荷产生称为门控电流(及其对应的门控电荷)的非线性(即与电压有关)的电容电流,这是表征VSMP中电压激活特性的关键实验量。然而,旨在将VSMP上的结构信息与电生理测量相关联的相关理论/计算方法已经相当有限,在VSMP的计算机模拟中提出了广泛的挑战。伴随着电压耦合的粗粒度(CG)模型的发展,我们采用了膜蛋白中的电压效应处理的理论框架来模拟VSMP激活,并采用源自Ciona intestinalis的VSD(Ci-VSD)电压敏感磷酸酶(Ci-VSP)作为模型系统。我们的CG模型从几个不同的角度再现了观察到的Ci-VSD激活的门控电荷。特别是,同时考虑了波动耗散关系,该关系将门控电荷的非平衡测量值与电荷波动的平衡测量值(即电压-膜电容的独立线性分量)。反过来,该表达式揭示了一条新颖的链接,该链接将电压无关的线性电容的平衡测量与电压无关的非线性电容的非平衡测量(其积分过电压等于门控电荷)联系起来。此外,我们的CG模型会产生类似电容器的电压相关自由能抛物线,从而在“零”(去极化)膜电位下导致Ci-VSD活化的自由能差和自由能垒。重要的是,所得的依赖电压的能量学使得能够直接评估电容电压关系(C-V曲线)以及充电电压关系(Q-V曲线),这与所观察到的Ci-VSD电压激活的测量值非常一致。重要的是,我们对VSMP中电压依赖性激活的动力学/热力学模型的扩展允许电压依赖性速率常数的新颖派生,其常数由VSMP的固有属性表示。这些新颖的封闭形式的表达式为半经验的Eyring型电压依赖性速率方程式提供了物理化学基础,这些方程式是离子通道和转运蛋白机理研究中门控和膜电流的现象学(动力学)描述的基础。在本研究中,我们扩展的理论框架对Hodgkin-Huxley型模型框架内的神经细胞尖峰产生的门控电荷波动起着潜在的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号