首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition
【2h】

Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition

机译:定量设计的蛋白质特异性开关的可转移性揭示了分子识别中广泛的上位性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Reengineering protein–protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of “second-site suppressors,” where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein–protein interfaces. To extend this approach, it would be advantageous to be able to “transplant” existing engineered and experimentally validated specificity changes to other homologous protein–protein complexes. Here, we test this strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain–peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein–protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. Although the context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein–protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.
机译:重新设计蛋白质-蛋白质识别是解剖和控制复杂相互作用网络的重要途径。实验方法采用了“第二位抑制子”的策略,如果一种蛋白的突变可以被第二种蛋白的突变补偿,则可以推断出两种蛋白之间的功能相互作用。模仿此策略,计算设计已成功应用于通过预测蛋白质-蛋白质界面中的此类补偿性突变集来改变蛋白质识别特异性。为了扩展这种方法,将能够“移植”现有的经过工程和实验验证的特异性改变到其他同源蛋白质-蛋白质复合物将是有利的。在这里,我们通过设计一对可调节Syntrophin PDZ域中的肽段识别特异性的突变,通过生化和结构性确认设计的相互作用,然后将突变移植到五种相关的PDZ域-肽复合物中来测试这一策略。我们在结构相似的位置发现了相同突变的多种能量作用,揭示了同源蛋白-蛋白相互作用中设计突变的戏剧性背景依赖性(表位)。为了更好地理解此上下文依赖的结构基础,我们应用了一个基于结构的计算模型,该模型概括了这些能量效应,并使用该模型进行并验证了前瞻性预测。尽管这些突变的上下文相关性是通过计算预测捕获的,但我们的结果既凸显了设计蛋白质间相互作用的巨大困难,也为开发能够准确说明上下文的蛋白质建模和设计方法提供了具有挑战性的基准案例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号