首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Colloquium PaperMapping Knowledge Domains: The simultaneous evolution of author and paper networks
【2h】

Colloquium PaperMapping Knowledge Domains: The simultaneous evolution of author and paper networks

机译:研讨会论文制图知识领域:作者和论文网络的同步发展

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There has been a long history of research into the structure and evolution of mankind's scientific endeavor. However, recent progress in applying the tools of science to understand science itself has been unprecedented because only recently has there been access to high-volume and high-quality data sets of scientific output (e.g., publications, patents, grants) and computers and algorithms capable of handling this enormous stream of data. This article reviews major work on models that aim to capture and recreate the structure and dynamics of scientific evolution. We then introduce a general process model that simultaneously grows coauthor and paper citation networks. The statistical and dynamic properties of the networks generated by this model are validated against a 20-year data set of articles published in PNAS. Systematic deviations from a power law distribution of citations to papers are well fit by a model that incorporates a partitioning of authors and papers into topics, a bias for authors to cite recent papers, and a tendency for authors to cite papers cited by papers that they have read. In this TARL model (for topics, aging, and recursive linking), the number of topics is linearly related to the clustering coefficient of the simulated paper citation network.
机译:关于人类科学事业的结构和演变的研究已有很长的历史。但是,应用科学工具来理解科学本身的最新进展是空前的,因为直到最近才可以访问科学产出的大量,高质量的数据集(例如出版物,专利,赠款)以及计算机和算法能够处理如此庞大的数据流。本文回顾了模型的主要工作,这些模型旨在捕获和重建科学演化的结构和动力学。然后,我们介绍了一个通用的过程模型,该模型同时发展了合著者和论文的引文网络。该模型生成的网络的统计和动态属性已根据PNAS上发表的20年文章数据集进行了验证。从引用的幂律分布到论文的系统偏差很适合以下模型:该模型将作者和论文的划分纳入主题,作者偏向引用最近的论文,以及作者偏向引用论文引用的论文的趋势已经阅读。在此TARL模型中(用于主题,老化和递归链接),主题的数量与模拟论文引用网络的聚类系数线性相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号