首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Uracil-DNA glycosylase–DNA substrate and product structures: Conformational strain promotes catalytic efficiency by coupled stereoelectronic effects
【2h】

Uracil-DNA glycosylase–DNA substrate and product structures: Conformational strain promotes catalytic efficiency by coupled stereoelectronic effects

机译:尿嘧啶-DNA糖基化酶-DNA底物和产物结构:构象菌株通过耦合立体电子效应提高催化效率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Enzymatic transformations of macromolecular substrates such as DNA repair enzyme/DNA transformations are commonly interpreted primarily by active-site functional-group chemistry that ignores their extensive interfaces. Yet human uracil–DNA glycosylase (UDG), an archetypical enzyme that initiates DNA base-excision repair, efficiently excises the damaged base uracil resulting from cytosine deamination even when active-site functional groups are deleted by mutagenesis. The 1.8-Å resolution substrate analogue and 2.0-Å resolution cleaved product cocrystal structures of UDG bound to double-stranded DNA suggest enzyme–DNA substrate-binding energy from the macromolecular interface is funneled into catalytic power at the active site. The architecturally stabilized closing of UDG enforces distortions of the uracil and deoxyribose in the flipped-out nucleotide substrate that are relieved by glycosylic bond cleavage in the product complex. This experimentally defined substrate stereochemistry implies the enzyme alters the orientation of three orthogonal electron orbitals to favor electron transpositions for glycosylic bond cleavage. By revealing the coupling of this anomeric effect to a delocalization of the glycosylic bond electrons into the uracil aromatic system, this structurally implicated mechanism resolves apparent paradoxes concerning the transpositions of electrons among orthogonal orbitals and the retention of catalytic efficiency despite mutational removal of active-site functional groups. These UDG/DNA structures and their implied dissociative excision chemistry suggest biology favors a chemistry for base-excision repair initiation that optimizes pathway coordination by product binding to avoid the release of cytotoxic and mutagenic intermediates. Similar excision chemistry may apply to other biological reaction pathways requiring the coordination of complex multistep chemical transformations.
机译:大分子底物的酶促转化,例如DNA修复酶/ DNA转化,通常主要由忽略其广泛界面的活性位官能团化学来解释。然而,人类尿嘧啶-DNA糖基化酶(UDG)是一种启动DNA碱基切除修复的原型酶,即使通过诱变作用删除了活性位点的功能基团,也能有效地切除由于胞嘧啶脱氨而导致的受损碱基尿嘧啶。与双链DNA结合的UDG的1.8-Å分辨率底物类似物和2.0-Å分辨率裂解产物共晶体结构表明,来自大分子界面的酶-DNA底物结合能在活性位点被转化为催化能力。 UDG在结构上稳定的关闭可在翻转的核苷酸底物中增强尿嘧啶和脱氧核糖的畸变,这种畸变可通过产物复合物中的糖基键裂解得到缓解。实验确定的底物立体化学暗示该酶改变了三个正交电子轨道的方向,有利于糖基键裂解的电子转位。通过揭示这种异头作用与糖基键电子的离域到尿嘧啶芳族系统的耦合,这种结构上牵连的机制解决了有关正交轨道之间电子换位以及尽管活性位点被突变去除而保持催化效率的明显悖论。功能组。这些UDG / DNA结构及其隐含的解离性切除化学表明生物学偏爱一种用于碱基切除修复起始的化学,该化学可通过产物结合来优化途径协调,从而避免细胞毒性和诱变中间体的释放。类似的切除化学可应用于需要协调多步化学转化的其他生物反应途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号