首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Improved prediction of protein secondary structure by use of sequence profiles and neural networks.
【2h】

Improved prediction of protein secondary structure by use of sequence profiles and neural networks.

机译:通过使用序列图谱和神经网络改进蛋白质二级结构的预测。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The explosive accumulation of protein sequences in the wake of large-scale sequencing projects is in stark contrast to the much slower experimental determination of protein structures. Improved methods of structure prediction from the gene sequence alone are therefore needed. Here, we report a substantial increase in both the accuracy and quality of secondary-structure predictions, using a neural-network algorithm. The main improvements come from the use of multiple sequence alignments (better overall accuracy), from "balanced training" (better prediction of beta-strands), and from "structure context training" (better prediction of helix and strand lengths). This method, cross-validated on seven different test sets purged of sequence similarity to learning sets, achieves a three-state prediction accuracy of 69.7%, significantly better than previous methods. In addition, the predicted structures have a more realistic distribution of helix and strand segments. The predictions may be suitable for use in practice as a first estimate of the structural type of newly sequenced proteins.
机译:大规模测序项目之后,蛋白质序列的爆炸性积累与蛋白质结构的实验确定要慢得多。因此,需要仅从基因序列进行结构预测的改进方法。在这里,我们报告使用神经网络算法的二级结构预测的准确性和质量都大大提高了。主要的改进来自使用多个序列比对(更好的整体准确性),“平衡训练”(更好地预测β链)和“结构上下文训练”(更好地预测螺旋和链长)。该方法在七个与学习集的序列相似性被清除的不同测试集上进行交叉验证,实现了三态预测精度为69.7%,明显优于以前的方法。另外,预测的结构具有更现实的螺旋和链段分布。该预测可能适合于在实践中用作新测序蛋白质的结构类型的第一估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号