首页> 美国卫生研究院文献>PLoS Pathogens >Biochemical and Structural Insights into the Mechanisms of SARS Coronavirus RNA Ribose 2′-O-Methylation by nsp16sp10 Protein Complex
【2h】

Biochemical and Structural Insights into the Mechanisms of SARS Coronavirus RNA Ribose 2′-O-Methylation by nsp16sp10 Protein Complex

机译:生化和结构见解的机制由nsp16 / nsp10蛋白复合物的SARS冠状病毒RNA核糖2-O-甲基化。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The 5′-cap structure is a distinct feature of eukaryotic mRNAs, and eukaryotic viruses generally modify the 5′-end of viral RNAs to mimic cellular mRNA structure, which is important for RNA stability, protein translation and viral immune escape. SARS coronavirus (SARS-CoV) encodes two S-adenosyl-L-methionine (SAM)-dependent methyltransferases (MTase) which sequentially methylate the RNA cap at guanosine-N7 and ribose 2′-O positions, catalyzed by nsp14 N7-MTase and nsp16 2′-O-MTase, respectively. A unique feature for SARS-CoV is that nsp16 requires non-structural protein nsp10 as a stimulatory factor to execute its MTase activity. Here we report the biochemical characterization of SARS-CoV 2′-O-MTase and the crystal structure of nsp16sp10 complex bound with methyl donor SAM. We found that SARS-CoV nsp16 MTase methylated m7GpppA-RNA but not m7GpppG-RNA, which is in contrast with nsp14 MTase that functions in a sequence-independent manner. We demonstrated that nsp10 is required for nsp16 to bind both m7GpppA-RNA substrate and SAM cofactor. Structural analysis revealed that nsp16 possesses the canonical scaffold of MTase and associates with nsp10 at 1∶1 ratio. The structure of the nsp16sp10 interaction interface shows that nsp10 may stabilize the SAM-binding pocket and extend the substrate RNA-binding groove of nsp16, consistent with the findings in biochemical assays. These results suggest that nsp16sp10 interface may represent a better drug target than the viral MTase active site for developing highly specific anti-coronavirus drugs.
机译:5'-cap结构是真核mRNA的显着特征,真核病毒通常修饰病毒RNA的5'-末端以模仿细胞mRNA结构,这对于RNA稳定性,蛋白质翻译和病毒免疫逃逸至关重要。 SARS冠状病毒(SARS-CoV)编码两个S-腺苷-L-蛋氨酸(SAM)依赖的甲基转移酶(MTase),它们通过nsp14 N7-MTase和nsp16 2'-O-MTase。 SARS-CoV的独特功能是nsp16需要非结构蛋白nsp10作为执行其MTase活性的刺激因子。在这里我们报告了SARS-CoV 2'-O-MTase的生化特征以及与甲基供体SAM结合的nsp16 / nsp10复合物的晶体结构。我们发现SARS-CoV nsp16 MTase甲基化了m7GpppA-RNA,但未甲基化m7GpppG-RNA,这与以序列独立方式起作用的nsp14 MTase相反。我们证明了nsp16结合m7GpppA-RNA底物和SAM辅因子需要nsp10。结构分析表明,nsp16具有典型的MTase支架,并与nsp10以1∶1的比例结合。 nsp16 / nsp10相互作用界面的结构表明,nsp10可以稳定SAM结合袋并延长nsp16的底物RNA结合槽,这与生化分析的结果一致。这些结果表明,对于开发高度特异性的抗冠状病毒药物,nsp16 / nsp10接口可能代表比病毒MTase活性位点更好的药物靶标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号