首页> 美国卫生研究院文献>Plant Physiology >Recovering Wind-Induced Plant Motion in Dense Field Environments via Deep Learning and Multiple Object Tracking
【2h】

Recovering Wind-Induced Plant Motion in Dense Field Environments via Deep Learning and Multiple Object Tracking

机译:通过深度学习和多对象跟踪在密集的野外环境中恢复风力引发的植物运动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding the relationships between local environmental conditions and plant structure and function is critical for both fundamental science and for improving the performance of crops in field settings. Wind-induced plant motion is important in most agricultural systems, yet the complexity of the field environment means that it remained understudied. Despite the ready availability of image sequences showing plant motion, the cultivation of crop plants in dense field stands makes it difficult to detect features and characterize their general movement traits. Here, we present a robust method for characterizing motion in field-grown wheat plants (Triticum aestivum) from time-ordered sequences of red, green, and blue images. A series of crops and augmentations was applied to a dataset of 290 collected and annotated images of ear tips to increase variation and resolution when training a convolutional neural network. This approach enables wheat ears to be detected in the field without the need for camera calibration or a fixed imaging position. Videos of wheat plants moving in the wind were also collected and split into their component frames. Ear tips were detected using the trained network, then tracked between frames using a probabilistic tracking algorithm to approximate movement. These data can be used to characterize key movement traits, such as periodicity, and obtain more detailed static plant properties to assess plant structure and function in the field. Automated data extraction may be possible for informing lodging models, breeding programs, and linking movement properties to canopy light distributions and dynamic light fluctuation.
机译:了解基础环境条件与植物结构和功能之间的关系对于基础科学和提高田间环境下的作物生长性能都至关重要。风引起的植物运动在大多数农业系统中都很重要,但是野外环境的复杂性意味着对它的研究仍很不足。尽管可以随时获得显示植物运动的图像序列,但是在茂密的田间林中种植农作物,很难检测到特征并表征其总体运动特征。在这里,我们提供了一种从红色,绿色和蓝色图像的时间顺序序列中表征田间生长的小麦植物(Triticum aestivum)中运动的鲁棒方法。在训练卷积神经网络时,将一系列作物和扩增应用于290个收集和注释的耳塞图像的数据集,以增加变化和分辨率。这种方法可以在野外检测麦穗,而无需进行相机校准或固定成像位置。还收集了风中移动的小麦植株的视频,并将其分割成各个组成部分。使用训练有素的网络检测耳尖,然后使用概率跟踪算法在帧之间进行跟踪以近似运动。这些数据可用于表征关键的运动性状,例如周期性,并获得更详细的静态植物特性以评估田间的植物结构和功能。自动数据提取可能用于通知倒伏模型,育种程序,并将运动特性链接到冠层光分布和动态光波动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号