首页> 美国卫生研究院文献>Plant Physiology >Decrease in Manganese Superoxide Dismutase Leads to Reduced Root Growth and Affects Tricarboxylic Acid Cycle Flux and Mitochondrial Redox Homeostasis
【2h】

Decrease in Manganese Superoxide Dismutase Leads to Reduced Root Growth and Affects Tricarboxylic Acid Cycle Flux and Mitochondrial Redox Homeostasis

机译:锰超氧化物歧化酶的减少导致根生长减少并影响三羧酸循环通量和线粒体氧化还原稳态。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Superoxide dismutases (SODs) are key components of the plant antioxidant defense system. While plastidic and cytosolic isoforms have been extensively studied, the importance of mitochondrial SOD at a cellular and whole-plant level has not been established. To address this, transgenic Arabidopsis (Arabidopsis thaliana) plants were generated in which expression of AtMSD1, encoding the mitochondrial manganese (Mn)SOD, was suppressed by antisense. The strongest antisense line showed retarded root growth even under control growth conditions. There was evidence for a specific disturbance of mitochondrial redox homeostasis in seedlings grown in liquid culture: a mitochondrially targeted redox-sensitive green fluorescent protein was significantly more oxidized in the MnSOD-antisense background. In contrast, there was no substantial change in oxidation of cytosolically targeted redox-sensitive green fluorescent protein, nor changes in antioxidant defense components. The consequences of altered mitochondrial redox status of seedlings were subtle with no widespread increase of mitochondrial protein carbonyls or inhibition of mitochondrial respiratory complexes. However, there were specific inhibitions of tricarboxylic acid (TCA) cycle enzymes (aconitase and isocitrate dehydrogenase) and an inhibition of TCA cycle flux in isolated mitochondria. Nevertheless, total respiratory CO2 output of seedlings was not decreased, suggesting that the inhibited TCA cycle enzymes can be bypassed. In older, soil-grown plants, redox perturbation was more pronounced with changes in the amount and/or redox poise of ascorbate and glutathione. Overall, the results demonstrate that reduced MnSOD affects mitochondrial redox balance and plant growth. The data also highlight the flexibility of plant metabolism with TCA cycle inhibition having little effect on overall respiratory rates.
机译:超氧化物歧化酶(SOD)是植物抗氧化防御系统的关键组成部分。尽管对质体和胞质亚型进行了广泛的研究,但线粒体SOD在细胞和整个植物水平上的重要性尚未确立。为了解决这个问题,产生了转基因拟南芥(Arabidopsis thaliana)植物,其中反义抑制了编码线粒体锰(Mn)SOD的AtMSD1的表达。即使在对照生长条件下,最强的反义品系也显示出根系生长受阻。有证据表明在液体培养中的幼苗中线粒体氧化还原稳态发生了特定的干扰:线粒体靶向氧化还原敏感的绿色荧光蛋白在MnSOD反义背景下明显被氧化。相反,细胞质靶向氧化还原敏感的绿色荧光蛋白的氧化没有实质性变化,抗氧化剂防御成分也没有变化。幼苗线粒体氧化还原状态改变的后果是微妙的,线粒体蛋白羰基没有广泛增加,也不抑制线粒体呼吸复合体。但是,在分离的线粒体中,三羧酸(TCA)循环酶(aco酸酶和异柠檬酸脱氢酶)受到特定抑制,而TCA循环通量受到抑制。然而,幼苗的总呼吸CO2产量并未降低,这表明可以绕过抑制的TCA循环酶。在较老的土壤生长植物中,随着抗坏血酸和谷胱甘肽的含量和/或氧化还原平衡的变化,氧化还原扰动更加明显。总体而言,结果表明减少的MnSOD会影响线粒体氧化还原平衡和植物生长。数据还突出显示了具有TCA循环抑制作用的植物代谢灵活性,对总体呼吸频率影响很小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号