首页> 美国卫生研究院文献>Plant Physiology >Differential Synthesis of Photosystem Cores and Light-Harvesting Antenna during Proplastid to Chloroplast Development in Spirodela oligorrhiza
【2h】

Differential Synthesis of Photosystem Cores and Light-Harvesting Antenna during Proplastid to Chloroplast Development in Spirodela oligorrhiza

机译:螺旋藻原生质体向叶绿体发育过程中光系统核心和光收集天线的差异合成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Proplastids and etioplasts are common starting points for monitoring chloroplast development in higher plants. Although proplastids are the primary precursor of chloroplasts, most proplastid to chloroplast systems are cumbersome to study temporally. Conversely, the etioplast to chloroplast transition is initiated by light and is readily examined as a function of time. Etioplasts, however, are found mostly in plants germinated in the dark and are not an obligatory step in chloroplast development. We have chosen to study chloroplast ontogeny in Spirodela oligorrhiza (Kurtz) Hegelm (a C3-monocot) because of its unique ability to grow indefinitely in the dark. Ultrastructural, physiological, and molecular evidence is presented in support of a temporal, light-triggered proplastid to chloroplast transition in Spirodela. The dark-grown plants are devoid of chlorophyll, and upon illumination synchronously green over a 3- to 5-day period. Synthesis of chloroplast proteins involved in photosynthesis is coincident with thylakoid assembly, chlorophyll accumulation, and appearance of CO2 fixation activity. Interestingly, the developmental sequence in Spirodela was slow enough to reveal that biosynthesis of the D1 photosystem II reaction center protein precedes biosynthesis of the major light-harvesting antenna proteins. This, coupled with the high chlorophyll a/b ratio observed early in development, indicated that reaction center assembly occurred prior to accumulation of the light-harvesting complexes. Thus, with Spirodela one can study proplastid to chloroplast conversions temporally in higher plants and follow the process on a time scale that enables a detailed dissection of plastid maturation processes.
机译:质体和质体是监测高等植物中叶绿体发育的常见起点。尽管原生质体是叶绿体的主要前体,但大多数叶绿体系统的质体繁琐,难以在时间上进行研究。相反,由光引发了质体向叶绿体的转变,并容易地将其作为时间的函数进行检查。然而,原生质体主要存在于黑暗中发芽的植物中,并不是叶绿体发育的必需步骤。我们选择研究无缘螺旋藻(Curtzela Hegelm)(一种C3单子叶植物)中的叶绿体个体发育,因为它具有在黑暗中无限期生长的独特能力。提供了超微结构,生理和分子证据,以支持螺旋藻中暂时的,光触发的质体向叶绿体的转变。深色生长的植物没有叶绿素,并且在光照下3-5天同步变绿。参与光合作用的叶绿体蛋白的合成与类囊体组装,叶绿素积累和CO2固定活性的出现相吻合。有趣的是,Spirodela中的发育序列足够缓慢,足以揭示D1光系统II反应中心蛋白的生物合成先于主要的光收集天线蛋白的生物合成。这与开发早期观察到的高叶绿素a / b比率相结合,表明反应中心组装发生在光捕获复合物积累之前。因此,使用Spirodela可以在高等植物中暂时研究质体向叶绿体的转化,并在一定时间范围内跟踪该过程,从而可以详细剖析质体的成熟过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号