首页> 美国卫生研究院文献>Plant Physiology >Short-Term Metabolite Changes during Transient Ammonium Assimilation by the N-Limited Green Alga Selenastrum minutum
【2h】

Short-Term Metabolite Changes during Transient Ammonium Assimilation by the N-Limited Green Alga Selenastrum minutum

机译:N限制的绿藻小孢子瞬时吸收氨过程中的短期代谢物变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, we measured the total pool sizes of key cellular metabolites from nitrogen-limited cells of Selenastrum minutum before and during ammonium assimilation in the light. This was carried out to identify the sites at which N assimilation is acting to regulate carbon metabolism. Over 120 seconds following NH4+ addition we found that: (a) N accumulated in glutamine while glutamate and α-ketoglutarate levels fell; (b) ATP levels declined within 5 seconds and recovered within 30 seconds of NH4+ addition; (c) ratios of pyruvate/phosphoenolpyruvate, malate/phosphoenolpyruvate, Glc-1-P/Glc-6-P and Fru-1,6-bisphosphate/Fru-6-P increased; and (d) as previously seen, photosynthetic carbon fixation was inhibited. Further, we monitored starch degradation during N assimilation over a longer time course and found that starch breakdown occurred at a rate of about 110 micromoles glucose per milligram chlorophyll per hour. The results are consistent with N assimilation occurring through glutamine synthetase/glutamate synthase at the expense of carbon previously stored as starch. They also indicate that regulation of several enzymes is involved in the shift in metabolism from photosynthetic carbon assimilation to carbohydrate oxidation during N assimilation. It seems likely that pyruvate kinase, phosphoenolpyruvate carboxylase, and starch degradation are all activated, whereas key Calvin cycle enzyme(s) are inactivated within seconds of NH4+ addition to N-limited S. minutum cells. The rapid changes in glutamate and triose phosphate, recently shown to be regulators of cytosolic pyruvate kinase, are consistent with them contributing to the short-term activation of this enzyme.
机译:在这项研究中,我们测量了铵同化作用下和光照过程中小硒硒限氮细胞中关键细胞代谢产物的总库大小。进行此操作是为了确定N同化作用在哪里调节碳代谢。加入NH4 + 后120秒钟,我们发现:(a)谷氨酰胺中积累了氮,而谷氨酸和α-酮戊二酸的水平下降了; (b)ATP水平在加入NH4 + 的5秒内下降,并在30秒内恢复; (c)丙酮酸/磷酸烯醇丙酮酸,苹果酸/磷酸烯醇丙酮酸,Glc-1-P / Glc-6-P和Fru-1,6-双磷酸酯/ Fru-6-P的比例增加; (d)如前所述,光合碳固定受到抑制。此外,我们在更长的时间过程中监测了N同化过程中的淀粉降解,发现淀粉分解的发生速度约为每小时每毫克叶绿素110微摩尔葡萄糖。该结果与通过谷氨酰胺合成酶/谷氨酸合酶发生的N同化作用相一致,但以先前作为淀粉存储的碳为代价。他们还表明在N同化过程中,几种酶的调节参与了从光合碳同化到碳水化合物氧化的代谢转变。丙酮酸激酶,磷酸烯醇丙酮酸羧化酶和淀粉降解似乎都被激活了,而关键的Calvin循环酶在NH4 + 加入N限制的微小链霉菌细胞的几秒钟内就失活了。谷氨酸和磷酸三糖的快速变化最近被证明是胞质丙酮酸激酶的调节剂,与它们促进该酶的短期活化相一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号