首页> 美国卫生研究院文献>The Plant Cell >Translocations of Chromosome End-Segments and Facultative Heterochromatin Promote Meiotic Ring Formation in Evening Primroses
【2h】

Translocations of Chromosome End-Segments and Facultative Heterochromatin Promote Meiotic Ring Formation in Evening Primroses

机译:染色体末端的移位和兼性杂染色质促进月见草中减数分裂环的形成。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Due to reciprocal chromosomal translocations, many species of Oenothera (evening primrose) form permanent multichromosomal meiotic rings. However, regular bivalent pairing is also observed. Chiasmata are restricted to chromosomal ends, which makes homologous recombination virtually undetectable. Genetic diversity is achieved by changing linkage relations of chromosomes in rings and bivalents via hybridization and reciprocal translocations. Although the structural prerequisite for this system is enigmatic, whole-arm translocations are widely assumed to be the mechanistic driving force. We demonstrate that this prerequisite is genome compartmentation into two epigenetically defined chromatin fractions. The first one facultatively condenses in cycling cells into chromocenters negative both for histone H3 dimethylated at lysine 4 and for C-banding, and forms huge condensed middle chromosome regions on prophase chromosomes. Remarkably, it decondenses in differentiating cells. The second fraction is euchromatin confined to distal chromosome segments, positive for histone H3 lysine 4 dimethylation and for histone H3 lysine 27 trimethylation. The end-segments are deprived of canonical telomeres but capped with constitutive heterochromatin. This genomic organization promotes translocation breakpoints between the two chromatin fractions, thus facilitating exchanges of end-segments. We challenge the whole-arm translocation hypothesis by demonstrating why reciprocal translocations of chromosomal end-segments should strongly promote meiotic rings and evolution toward permanent translocation heterozygosity. Reshuffled end-segments, each possessing a major crossover hot spot, can furthermore explain meiotic compatibility between genomes with different translocation histories.
机译:由于相互的染色体易位,月见草(月见草)的许多物种形成了永久的多染色体减数分裂环。但是,也观察到规则的二价配对。 Chiasmata仅限于染色体末端,这使得同源重组几乎无法检测到。通过杂交和相互易位,改变环和二价染色体的连锁关系,可以实现遗传多样性。尽管此系统的结构先决条件是神秘的,但人们普遍认为,整臂移位是机械驱动力。我们证明了此先决条件是将基因组分隔成两个表观遗传定义的染色质部分。第一个在循环细胞中凝聚地凝结成对在赖氨酸4处二甲基化的组蛋白H3和C谱带均为阴性的色心,并在前期染色体上形成巨大的稠密中间染色体区域。值得注意的是,它在分化细胞中凝结。第二部分是常染色质,限制在远端染色体区段,对组蛋白H3赖氨酸4二甲基化和组蛋白H3赖氨酸27三甲基化呈阳性。末端片段被剥夺了典型的端粒,但被组成型异染色质覆盖。这种基因组组织促进了两个染色质组分之间的易位转折点,从而促进了末端片段的交换。我们通过证明为什么染色体末端区段的相互易位应该强烈促进减数分裂环和向永久易位杂合性的进化来挑战全臂易位假设。经过改组的末端片段,每个片段都有一个主要的交叉热点,可以进一步解释具有不同易位历史的基因组之间的减数分裂相容性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号