首页> 美国卫生研究院文献>Dose-Response >Model Averaging with AIC Weights for Hypothesis Testing of Hormesis at Low Doses
【2h】

Model Averaging with AIC Weights for Hypothesis Testing of Hormesis at Low Doses

机译:使用AIC权重进行模型平均以进行低剂量的兴奋剂假设测试

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For many dose–response studies, large samples are not available. Particularly, when the outcome of interest is binary rather than continuous, a large sample size is required to provide evidence for hormesis at low doses. In a small or moderate sample, we can gain statistical power by the use of a parametric model. It is an efficient approach when it is correctly specified, but it can be misleading otherwise. This research is motivated by the fact that data points at high experimental doses have too much contribution in the hypothesis testing when a parametric model is misspecified. In dose–response analyses, to account for model uncertainty and to reduce the impact of model misspecification, averaging multiple models have been widely discussed in the literature. In this article, we propose to average semiparametric models when we test for hormesis at low doses. We show the different characteristics of averaging parametric models and averaging semiparametric models by simulation. We apply the proposed method to real data, and we show that P values from averaged semiparametric models are more credible than P values from averaged parametric methods. When the true dose–response relationship does not follow a parametric assumption, the proposed method can be an alternative robust approach.
机译:对于许多剂量反应研究,都没有大样本。特别是,当感兴趣的结果是二元的而不是连续的时,需要大样本量以提供低剂量下药效的证据。在小样本或中等样本中,我们可以通过使用参数模型来获得统计功效。如果正确指定它,这是一种有效的方法,但否则可能会引起误解。这项研究的动机是,当错误指定参数模型时,高实验剂量的数据点在假设检验中起了很大的作用。在剂量反应分析中,为解决模型不确定性并减少模型错误指定的影响,在文献中广泛讨论了对多个模型求平均值的问题。在本文中,我们建议在低剂量下测试兴奋性时将半参数模型平均化。通过仿真,我们展示了平均参数模型和平均半参数模型的不同特征。我们将提出的方法应用于实际数据,并且表明平均半参数模型的P值比平均参数方法的P值更可信。当真实的剂量-反应关系不遵循参数假设时,建议的方法可以作为替代的稳健方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号