首页> 美国卫生研究院文献>NeuroImage : Clinical >Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI
【2h】

Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI

机译:使用多参数MRI进行脑肿瘤分割的无监督分类方法的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tumor segmentation is a particularly challenging task in high-grade gliomas (HGGs), as they are among the most heterogeneous tumors in oncology. An accurate delineation of the lesion and its main subcomponents contributes to optimal treatment planning, prognosis and follow-up. Conventional MRI (cMRI) is the imaging modality of choice for manual segmentation, and is also considered in the vast majority of automated segmentation studies. Advanced MRI modalities such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have already shown their added value in tumor tissue characterization, hence there have been recent suggestions of combining different MRI modalities into a multi-parametric MRI (MP-MRI) approach for brain tumor segmentation. In this paper, we compare the performance of several unsupervised classification methods for HGG segmentation based on MP-MRI data including cMRI, DWI, MRSI and PWI. Two independent MP-MRI datasets with a different acquisition protocol were available from different hospitals. We demonstrate that a hierarchical non-negative matrix factorization variant which was previously introduced for MP-MRI tumor segmentation gives the best performance in terms of mean Dice-scores for the pathologic tissue classes on both datasets.
机译:在高级神经胶质瘤(HGG)中,肿瘤分割是一项特别具有挑战性的任务,因为它们是肿瘤学中最异类的肿瘤之一。对病变及其主要子成分的准确描述有助于最佳的治疗计划,预后和随访。常规MRI(cMRI)是手动分割的首选成像方式,并且在大多数自动分割研究中也被考虑。诸如灌注加权成像(PWI),弥散加权成像(DWI)和磁共振波谱成像(MRSI)之类的高级MRI手段已经在肿瘤组织表征中显示了其附加价值,因此最近提出了将不同的MRI手段相结合的建议进入用于脑肿瘤分割的多参数MRI(MP-MRI)方法。在本文中,我们比较了基于cMRI,DWI,MRSI和PWI的MP-MRI数据对HGG分割的几种无监督分类方法的性能。来自不同医院的两个独立的MP-MRI数据集具有不同的采集方案。我们证明,先前针对MP-MRI肿瘤分割引入的分层非负矩阵分解变量可以在两个数据集上针对病理组织类别的平均Dice得分方面提供最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号