首页> 美国卫生研究院文献>Nanomaterials >Influence of External Gaseous Environments on the Electrical Properties of ZnO Nanostructures Obtained by a Hydrothermal Method
【2h】

Influence of External Gaseous Environments on the Electrical Properties of ZnO Nanostructures Obtained by a Hydrothermal Method

机译:外部气体环境对水热法获得的ZnO纳米结构电性能的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper deals with experimental investigations of ZnO nanostructures, consisting of a mixture of nanoparticles and nanowires, obtained by the chemical (hydrothermal) method. The influences of both oxidizing (NO2) and reducing gases (H2, NH3), as well as relative humidity (RH) on the physical and chemical properties of ZnO nanostructures were tested. Carrier gas effect on the structure interaction with gases was also tested; experiments were conducted in air and nitrogen (N2) atmospheres. The effect of investigated gases on the resistance of the ZnO nanostructures was tested over a wide range of concentrations at room temperature (RT) and at 200 °C. The impact of near- ultraviolet (UV) excitation (λ = 390 nm) at RT was also studied. These investigations indicated a high response of ZnO nanostructures to small concentrations of NO2. The structure responses to 1 ppm of NO2 amounted to about: 600% in N2/230% in air at 200 °C (in dark conditions) and 430% in N2/340% in air at RT (with UV excitation). The response of the structure to the effect of NO2 at 200 °C is more than 105 times greater than the response to NH3, and more than 106 times greater than that to H2 in the relation of 1 ppm. Thus the selectivity of the structure for NO2 is very good. What is more, the selectivity to NO2 at RT with UV excitation increases in comparison at elevated temperature. This paper presents a great potential for practical applications of ZnO nanostructures (including nanoparticles) in resistive NO2 sensors.
机译:本文涉及通过化学(水热)方法获得的ZnO纳米结构的实验研究,该结构由纳米颗粒和纳米线的混合物组成。测试了氧化性(NO2)和还原性气体(H2,NH3)以及相对湿度(RH)对ZnO纳米结构的物理和化学性质的影响。还测试了载气对结构与气体相互作用的影响。实验是在空气和氮气(N2)气氛中进行的。在室温(RT)和200°C的宽浓度范围内,测试了所研究气体对ZnO纳米结构电阻的影响。还研究了RT下近紫外(UV)激发(λ= 390 nm)的影响。这些研究表明,ZnO纳米结构对低浓度的NO2有高响应。对1 ppm NO2的结构响应约为:在200°C(在黑暗条件下)的空气中,N2 / 230%在空气中为600%,在RT(通过紫外线激发)下,在空气中,N2 / 340%中,为430%。该结构在200°C下对NO2的响应比对NH3的响应高10 5 倍,比对NH3的响应高10 6 倍。与H2的比例为1 ppm。因此,该结构对NO 2的选择性非常好。此外,与高温下相比,在室温下通过紫外线激发对NO2的选择性增加。本文为电阻式NO2传感器中的ZnO纳米结构(包括纳米颗粒)的实际应用展示了巨大的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号