首页> 美国卫生研究院文献>Molecules >Detecting and Quantifying Biomolecular Interactions of a Dendritic Polyglycerol Sulfate Nanoparticle Using Fluorescence Lifetime Measurements
【2h】

Detecting and Quantifying Biomolecular Interactions of a Dendritic Polyglycerol Sulfate Nanoparticle Using Fluorescence Lifetime Measurements

机译:使用荧光寿命测量法检测和定量树突状聚甘油硫酸盐纳米颗粒的生物分子相互作用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Interactions of nanoparticles with biomaterials determine the biological activity that is key for the physiological response. Dendritic polyglycerol sulfates (dPGS) were found recently to act as an inhibitor of inflammation by blocking selectins. Systemic application of dPGS would present this nanoparticle to various biological molecules that rapidly adsorb to the nanoparticle surface or lead to adsorption of the nanoparticle to cellular structures such as lipid membranes. In the past, fluorescence lifetime measurements of fluorescently tagged nanoparticles at a molecular and cellular/tissue level have been proven to reveal valuable information on the local nanoparticle environment via characteristic fluorescent lifetime signatures of the nanoparticle bound dye. Here, we established fluorescence lifetime measurements as a tool to determine the binding affinity to fluorescently tagged dPGS (dPGS-ICC; ICC: indocarbocyanine). The binding to a cell adhesion molecule (L-selectin) and a human complement protein (C1q) to dPGS-ICC was evaluated by the concentration dependent change in the unique fluorescence lifetime signature of dPGS-ICC. The apparent binding affinity was found to be in the nanomolar range for both proteins (L-selectin: 87 ± 4 nM and C1q: 42 ± 12 nM). Furthermore, the effect of human serum on the unique fluorescence lifetime signature of dPGS-ICC was measured and found to be different from the interactions with the two proteins and lipid membranes. A comparison between the unique lifetime signatures of dPGS-ICC in different biological environments shows that fluorescence lifetime measurements of unique dPGS-ICC fluorescence lifetime signatures are a versatile tool to probe the microenvironment of dPGS in cells and tissue.
机译:纳米粒子与生物材料的相互作用决定了生物活性,这是生理反应的关键。最近发现树突状聚甘油硫酸盐(dPGS)通过阻断选择素起炎症抑制剂的作用。 dPGS的系统应用会将这种纳米颗粒呈现给各种生物分子,这些生物分子会迅速吸附到纳米颗粒表面或导致纳米颗粒吸附到细胞结构(如脂质膜)上。过去,已证明在分子和细胞/组织水平上对荧光标记纳米颗粒的荧光寿命测量通过结合纳米颗粒的染料的特征荧光寿命特征揭示了有关局部纳米颗粒环境的有价值信息。在这里,我们建立了荧光寿命测量工具,以确定与荧光标记的dPGS(dPGS-ICC; ICC:吲哚碳菁)的结合亲和力。通过dPGS-ICC独特的荧光寿命特征的浓度依赖性变化来评估与细胞粘附分子(L-选择蛋白)和人补体蛋白(C1q)与dPGS-ICC的结合。发现两种蛋白的表观结合亲和力都在纳摩尔范围内(L-选择蛋白:87±4nM和C1q:42±12nM)。此外,测量了人血清对dPGS-ICC独特的荧光寿命特征的影响,发现与两种蛋白质和脂质膜的相互作用不同。 dPGS-ICC在不同生物环境中的独特寿命特征之间的比较表明,独特dPGS-ICC荧光寿命特征的荧光寿命测量是一种探测细胞和组织中dPGS微环境的多功能工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号