首页> 美国卫生研究院文献>Microsystems Nanoengineering >Anomalous scaling of flexural phonon damping in nanoresonators with confined fluid
【2h】

Anomalous scaling of flexural phonon damping in nanoresonators with confined fluid

机译:受限流体中纳米谐振器挠曲声子阻尼的反常标度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Various one and two-dimensional (1D and 2D) nanomaterials and their combinations are emerging as next-generation sensors because of their unique opto-electro-mechanical properties accompanied by large surface-to-volume ratio and high quality factor. Though numerous studies have demonstrated an unparalleled sensitivity of these materials as resonant nanomechanical sensors under vacuum isolation, an assessment of their performance in the presence of an interacting medium like fluid environment is scarce. Here, we report the mechanical damping behavior of a 1D single-walled carbon nanotube (SWCNT) resonator operating in the fundamental flexural mode and interacting with a fluid environment, where the fluid is placed either inside or outside of the SWCNT. A scaling study of dissipation shows an anomalous behavior in case of interior fluid where the dissipation is found to be extremely low and scaling inversely with the fluid density. Analyzing the sources of dissipation reveals that (i) the phonon dissipation remains unaltered with fluid density and (ii) the anomalous dissipation scaling in the fluid interior case is solely a characteristic of the fluid response under confinement. Using linear response theory, we construct a fluid damping kernel which characterizes the hydrodynamic force response due to the resonant motion. The damping kernel-based analysis shows that the unexpected behavior stems from time dependence of the hydrodynamic response under nanoconfinement. Our systematic dissipation analysis helps us to infer the origin of the intrinsic dissipation. We also emphasize on the difference in dissipative response of the fluid under nanoconfinement when compared to a fluid exterior case. Our finding highlights a unique feature of confined fluid–structure interaction and evaluates its effect on the performance of high-frequency nanoresonators.
机译:各种一维和二维(1D和2D)纳米材料及其组合正在成为下一代传感器,因为它们具有独特的光电机械特性,并具有大的表面体积比和高品质因数。尽管大量研究表明,这些材料作为真空隔离下的共振纳米机械传感器具有无与伦比的灵敏度,但在诸如流体环境等相互作用介质的存在下,对其性能的评估却很少。在这里,我们报告一维单壁碳纳米管(SWCNT)谐振器的机械阻尼行为,该谐振器在基本挠曲模式下运行并与流体环境相互作用,在该流体环境中,流体放置在SWCNT的内部或外部。耗散的比例研究表明,在内部流体情况下,其耗散极低,并且与流体密度成反比,这是一种异常行为。分析耗散源发现,(i)声子耗散不会随流体密度的变化而改变,并且(ii)流体内部壳体中的异常耗散标度仅仅是在受限条件下流体响应的特征。使用线性响应理论,我们构造了一个流体阻尼内核,该阻尼阻尼内核描述了由于共振运动而产生的流体动力响应。基于阻尼核的分析表明,意外行为是由于纳米约束下流体动力学响应的时间依赖性而引起的。我们的系统耗散分析有助于我们推断固有耗散的起源。与流体外壳相比,我们还强调了纳米约束下流体的耗散响应差异。我们的发现突出了有限的流体-结构相互作用的独特特征,并评估了其对高频纳米谐振器性能的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号