首页> 美国卫生研究院文献>Saudi Journal of Biological Sciences >Support vector machine-based open crop model (SBOCM): Case of rice production in China
【2h】

Support vector machine-based open crop model (SBOCM): Case of rice production in China

机译:基于支持向量机的开放式作物模型(SBOCM):中国水稻生产案例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Existing crop models produce unsatisfactory simulation results and are operationally complicated. The present study, however, demonstrated the unique advantages of statistical crop models for large-scale simulation. Using rice as the research crop, a support vector machine-based open crop model (SBOCM) was developed by integrating developmental stage and yield prediction models. Basic geographical information obtained by surface weather observation stations in China and the 1:1000000 soil database published by the Chinese Academy of Sciences were used. Based on the principle of scale compatibility of modeling data, an open reading frame was designed for the dynamic daily input of meteorological data and output of rice development and yield records. This was used to generate rice developmental stage and yield prediction models, which were integrated into the SBOCM system. The parameters, methods, error resources, and other factors were analyzed. Although not a crop physiology simulation model, the proposed SBOCM can be used for perennial simulation and one-year rice predictions within certain scale ranges. It is convenient for data acquisition, regionally applicable, parametrically simple, and effective for multi-scale factor integration. It has the potential for future integration with extensive social and economic factors to improve the prediction accuracy and practicability.
机译:现有的作物模型产生的模拟结果不能令人满意,并且操作复杂。但是,本研究证明了用于大规模模拟的统计作物模型的独特优势。以水稻为研究作物,通过整合发育阶段和产量预测模型,开发了基于支持向量机的开放作物模型(SBOCM)。使用了中国地面气象观测站获得的基本地理信息以及中国科学院发布的1:1000000土壤数据库。根据建模数据的规模兼容性原理,设计了一个开放阅读框,用于气象数据的每日动态输入以及水稻发育和产量记录的动态输出。这用于生成水稻发育阶段和产量预测模型,这些模型已集成到SBOCM系统中。分析了参数,方法,错误资源和其他因素。尽管不是作物生理模拟模型,但所提出的SBOCM可以用于一定规模范围内的多年生模拟和一年期水稻预测。它便于数据采集,区域适用,参数简单且对多尺度因子集成有效。它有可能与广泛的社会和经济因素进行未来整合,以提高预测的准确性和实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号